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Abstract: In this paper we will describe a Bayesian model for excess of loss reinsurance pricing which has 
many advantages over existing methods. The model is currently used in production for multiple lines of 
business at one of the world’s largest reinsurers. This model treats frequency and severity separately. In 
estimating ultimate frequency, the model analyzes nominal claim count data jointly against uncertain ultimate 
frequency and development pattern priors, allowing for more careful analysis of sparse claim count 
information and properly differentiating between triangulated and last diagonal data. The severity model is 
pragmatic, yet accounts for severity distribution development and weighs the volume of data against prior 
distributions. The model is programmed in R and Stan, thus eliminating the need for a considerable amount 
of algebra and calculus and the necessity to use conjugate prior distribution families. We compare this method 
with the more established Buhlmann-Straub credibility application to excess of loss pricing (for instance in 
Cockroft), and the more complex model given by Mildenhall, showing numerous advantages of our method. 
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1. INTRODUCTION 

Cedent claim datasets used in the pricing of excess of loss reinsurance are often limited in 
size. Individual claim data is provided for claims above a certain threshold and can produce 
sparse excess claim count triangles for long tailed lines. In some cases, excess triangles might 
not be available. A difficult problem faced by reinsurance pricing actuaries is how much 
credibility to assign cedent experience with limited excess claims and how to blend this data 
with industry excess loss development patterns and exposure rating methods. 

We introduce a hierarchical Bayesian model which allows us to specify prior distributions 
and use Bayes’ Theorem to estimate posterior distributions based on the data. The model is 
programmed in R and Stan. The code, a sample dataset and case studies are provided so users 
can easily experiment for themselves. The foundation of this model is a standard Poisson-
Pareto compound frequency severity distribution with gamma prior distributions. It includes 
a claim count emergence model that combines a Weibull distribution with gamma marginal 
priors. Codependence between the two Weibull parameters, which was found in our study, is 
described using a copula function. The model is used in practice for multiple long-tailed lines 
of business at a major reinsurance company. The next section describes practical applicabilities 
and benefits practitioners can enjoy. 

The fundamental question on excess loss frequency is whether observing very few claims 
reported in an immature year is due to low ultimate frequency or slow development. 
Conversely, does a high observed claim count in an immature year imply high ultimate 
frequency or just quick development? The answer is that it could be an indication of either 
situation or a combination of both. Observed claim counts inform our view on the ultimate 



frequency and development pattern. How strong of an indicator the observed claim counts 
are depends on the relative uncertainty in the ultimate frequency compared to the uncertainty 
in the development pattern. The frequency model compares the observed claim counts to the 
joint probability of that observation under the uncertain ultimate frequency distribution and 
uncertain development pattern, allowing the two major assumptions (i.e., prior distributions) 
to be weighed against each other simultaneously. 

To complete the compound frequency severity distribution, we will also explain how to 
develop the Gamma-Pareto ultimate severity model. We will detail how our method addresses 
additional factors related to severity such as development, policy limit capping and loss 
adjustment expenses. Finally, we discuss comparisons to existing methods and Appendix A 
contains helpful one-page step-by-step guides to implementing the model in practice. 

2. FREQUENCY MODEL 

In this section we present a Bayesian frequency model for long-tailed, reinsurance excess 

of loss claim counts. A diagram of the frequency model is provided in Figure 1. Each 

component will be discussed at length in subsequent sections of this paper. 

The quantity of interest in this model is the ultimate expected frequency per exposure, 𝜆𝜆. 

However, we can only observe incremental claim counts in finite time intervals. A key concept 

is that claim counts are observed over a certain time period and the expected number of claims 

observed in that time period, given an expected ultimate frequency, is determined by the 

development pattern. The Poisson formula in the observation level of the diagram is the part 

of the model that connects the observed claim counts with the prior distributions of the 

development pattern and the ultimate expected frequency in order to estimate posterior 

distributions. The relative certainty or uncertainty in each of the two company level 

components of the diagram (i.e., ultimate expected frequency and development pattern) are 

simultaneously weighed against each other to derive posterior distributions.  

Note that CDF(t_2) – CDF(t_1) is the incremental expected percent of claims reported 

according to the Weibull development pattern assumption, where CDF refers to the 

cumulative distribution function. Also note that a hyperparameter in the context of a Bayesian 

hierarchical model is simply a parameter of a prior distribution in the model. Adding an 

additional “hyper” suffix simply moves us one level up the model hierarchy of parameters and 

prior distributions. 



 
Figure 1. Diagram of Hierarchical Bayesian Frequency Model 

 

The following are several advantages of the frequency model that we feel are important 

motivations for investing your time and understanding. Each advantage considers 

development pattern uncertainty or aims for a more consistent and efficient application of 

assumptions across cedents. We hope it will be useful for readers to know that these are actual 

benefits the authors have seen from the use of this model in a live reinsurance renewal pricing 

process, not just theoretical benefits that could potentially materialize. The technical 

explanation of the model continues in the next section.  

Development Pattern Uncertainty 

i. The frequency model incorporates development pattern uncertainty on large loss 

frequency. A common subjective consideration in reinsurance is the development 

pattern of the cedent and its relation to an assumed default pattern. Usually, a large 

amount of data is required in traditional pricing techniques to use a cedent pattern 

instead of a default pattern. Having an uncertain Weibull development distribution 



with prior hyperparameters allows the cedent data to inform the pattern, i.e., update 

the posterior, to the extent it is credible. 

ii. Frequency and development are evaluated at the same time and the model weighs 

the relative uncertainty in both. Observed claim counts by year and development 

period are compared to a distribution of possible observed claim counts based on 

the prior distributions of ultimate frequency and the incremental percent of claims 

reported. The claim count data contains information about both the development 

pattern and the ultimate frequency, and the model attempts to extract and separate 

that information according to the prior distributions and Bayes’ Theorem. 

iii. Data used in the frequency model can be triangulated or in last diagonal form – i.e., 

a large loss listing as of a particular date. The model has a way of judging the amount 

of information contained in a triangle. It differentiates credibility between 

triangulated and non-triangulated data so that credibility assignment increases when 

a cedent triangle is available.  

Consistency 

i. Actuarial judgement is applied in specification of the prior, not in the individual loss 

selection for each cedent or final loss estimate where a subjective credibility is 

assigned to experience. When given those priors, every cedent is analyzed on the 

same basis and thus removes some subjectivity of experience rating and credibility 

selection. The method of implying credibility is applied consistently among all 

cedents. Two cedents with same mean and amount of data will get same posterior 

results. No judgement is used in the selection of credibility, leading to a more 

consistent blending of exposure rating and experience. 

ii. The model meaningfully and consistently incorporates cedent data with few 

historical losses and sparse development triangles, including being able to use and 

appropriately update prior distributions when zero claims are observed. Credibility 

implied by the model varies by “sparseness” of the data triangle. 

Efficiency 

i. R and Stan codes derive posterior ultimate excess frequencies simultaneously for 



multiple cedents. This approach allows for increased efficiencies in the reinsurance 

pricing process. Prior distribution parameters and company priors can be updated 

during times of the year when a reinsurer’s workload is slower and not as hectic. 

ii. Closed form posteriors are unnecessary for this model because everything is 

programmed using R and Stan. Formulas are nice in theory but in practice there is 

usually a danger that long formulas in papers have typos, and there is the possibility 

of translation error between a formula in a paper and recreating that formula in 

Excel or a programming language. Bayesian MCMC produces samples of the 

posterior from which all desired values can be estimated without having to deal with 

algebraic formulas. 

2.1 The Observation Level of the Hierarchical Model 

We assume observed claims are Poisson distributed. When we observe a claim count in a 

certain time period, we can then compare that number with the theoretical mean of the 

Poisson which is a function of both the Weibull distribution of the development pattern and 

the gamma distribution of the expected ultimate frequency as shown in Figure 1.  

We use the following parameterization of the Poisson distribution: 

𝑝𝑝(𝑘𝑘; 𝜆𝜆) =
𝜆𝜆𝑘𝑘𝑒𝑒−𝜆𝜆

𝑘𝑘!
 

One might ask, why not just develop claims to ultimate using traditional techniques, and 

then treat those ultimate claim counts as observations of a Poisson distribution to more 

directly infer the ultimate frequency posterior? The answer is that this does not incorporate 

pattern uncertainty. A traditional development to ultimate will not capture the greater 

uncertainty (and weaker information relative to the prior) of the newer ages. We believe the 

model presented in this paper is a relatively direct way of incorporating pattern uncertainty 

into a large loss frequency analysis. 

2.2 Data Organization and Model Inputs 

Our study included 35 cedents providing primary General Liability coverage. The approach 

outlined in this paper can also be applied to other long-tailed lines of business such as Auto 

Liability or Workers’ Compensation. Our General Liability dataset contained more than 

12,500 claims with 3100 claims above $500,000. All companies had at least 10 accident years 



of information with some going back 20 years. There were 10 cedents with triangulated 

individual claims data and the remainder only provided claims along the last diagonal.  

Reporting thresholds in the dataset were not consistent for each company. Less than a 

handful of cedents provided ground up claims. The other thresholds ranged from $50,000 to 

$500,000 with $500,000 being the most common. Therefore, our Bayesian model was 

constructed with threshold of $500,000. 

Table 1 shows how to organize input data for the frequency model. Incremental claim 

counts are excess of a fixed threshold for all years and all companies. Columns obs_start and 

obs_end indicate starting and ending points of an observation age.  

 

Table 1. Sample Frequency Model Data 

Notice that starting observation ages are equal to zero in every year for Company 1. This 

set up is used when only the last diagonal of data is received. Compare this to Company 2 

where data for year 2010 is entered based on a claim count triangle. The input file, and the 

Bayesian frequency model, is structured to accommodate both triangulated and non-

triangulated data. 



Regarding the issue of loss trend, the model uses nominal data as input rather than trended 

data. Under “observed claim counts” in Figure 1, we show the application of a detrend factor. 

This is an excess frequency trend factor which includes ground up severity trend and the 

impact on excess frequency from ground up severity trend. Appendix B includes the frequency 

model Stan code. An assumed detrend factor of 10% is entered in the body of the code.  

Since the ultimate expected frequency value refers to the prospective analysis year, we 

detrend the frequency to an expected amount for each prior accident year. Losses increase in 

severity over time which implies that the expected ultimate frequency at a fixed nominal 

threshold should be lower for each previous year as one goes back in time1. There is no 

provision or allowance in this model for uncertainty in the trend, such as a prior distribution 

of annual trend amount, but it could be added relatively easily. 

Input data assumes all premium and exposures are brought to current levels. Exposure 

trend and other premium related trends are accounted for by using onlevel exposure or onlevel 

premium as data input under the “Premium” column in Table 1. Premium is used in our 

example as a proxy for exposure, but the most accurate measure of frequency is number of 

claims per exposure base. 

An important note on Company 2 is with regard to the obs_end value of 10.5 for year 

2010. Section 2.4 will provide details on how the frequency model is able to handle data with 

partial year development. Company 2 demonstrates a common reinsurance scenario where a 

12-month claim count development triangle is provided with a partial last diagonal – e.g., as 

of mid-year or June 30th. 

When working with triangulated data, incremental claim counts are used because there is 

correlation between cumulative claims at each age. Modeling cumulative claim counts requires 

additional parameterization of the correlation between ages which is an unnecessary 

 
 
1 Another way to recognize the impact of trend would be to detrend the loss threshold for older years. In that 
case, the expected ultimate frequency would be the same for each year but that frequency would be observed at  
a different threshold each year. We designed the model with a fixed nominal loss threshold for all years because 
that is the typical presentation of losses in a reinsurance submission, hence data available to reinsurance actuaries. 
 
Also, a flat trend for all years may not be technically correct depending on the shape of the severity distribution. 
For many distribution families, there is a leveraging effect where the increase in the probability of a large loss is 
greater than the increase in the average severity if a fixed factor is applied to all claim sizes. 



complication. We work with the simpler assumption that given an ultimate frequency and 

Weibull development pattern the observed claim counts from disjoint time periods are 

independent. 

2.3 Ultimate Expected Frequency and Parameterizing the Prior 

Ultimate expected frequency in the reinsurance layer is the quantity of interest because it 

determines the reinsurance loss cost. However, it is unobservable. We can only make 

inferences based on a prior distribution and observed claim counts at finite ages. Ultimate 

frequency is defined in the model as ultimate expected claim counts excess of a threshold per 

unit of premium.  

An ultimate frequency prior, denoted by �̂�𝜆, is established for each company in the portfolio. 

The authors of this paper derived priors using an exposure model, see (Clark 2014) page 27-

31. However, other methods of determining an a priori are also acceptable. In our study 

containing 35 cedents, a gamma distribution was a reasonable fit to the set of ultimate expected 

frequencies indicated by the classical exposure model. 

 
Figure 2. Fitted Gamma to empirical distribution of λ�prior_co[i] 

We use the following parameterization of the gamma distribution: 

𝑓𝑓(𝜆𝜆;𝛼𝛼,𝛽𝛽) =
𝛽𝛽𝛼𝛼

Г(𝛼𝛼)
𝜆𝜆𝛼𝛼−1𝑒𝑒−𝛽𝛽𝜆𝜆 

The mean of a gamma distribution is α/β. Therefore, we have: 



𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑐𝑐𝑝𝑝[𝑝𝑝] ~ Г(𝛽𝛽 ∗ �̂�𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑐𝑐𝑝𝑝[𝑝𝑝],𝛽𝛽) 

A universal value for β is assumed. It represents the variability of each individual cedent’s 

actual frequency from the exposure model estimate, which may be based only on a few 

variables such as state and product mix without accounting for things specific to the cedent 

like risk selection or claims handling skill/philosophy/etc. 

Theoretically there is a difference between the variability among each company’s exposure 

model frequency, versus the amount a cedent could differ from their own exposure model, 

but in the absence of a good way of measuring the latter, we use the former as a proxy. 

2.4 Claim Count Development 

A distribution of excess claim count development patterns is assumed in order to recognize 

that losses develop differently for each cedent, and that each cedent’s development pattern is 

uncertain. The frequency model responds in a proper way to the data based on the level of 

certainty represented by the prior distributions of the development pattern. 

It is preferable to select an excess claim count development pattern from a family of 
continuous distributions over discrete distributions. This allows for data with partial year 
development to be used as inputs into the model. Reinsurance submission data is rarely 
received as of December 31st. Continuous distributions have the flexibility to model latest 
diagonals at non-integer values such as 6 months or 18 months.  

A Weibull distribution was found to fit excess development patterns reasonably well for a 
substantial number of cedents. We will use the following notation for a cumulative claim count 
pattern: 

𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−(𝑥𝑥/𝐵𝐵)𝑐𝑐;𝑥𝑥 ≥ 0 

The scale parameter, B, controls the development pattern speed with higher values 
corresponding to a longer tail. The value of this parameter approximates the number of years 
until claims reach 63% development to ultimate. To see this, plugging in x=B produces the 
following cumulative development regardless of the value of c: 

𝐹𝐹(𝐵𝐵) = 1 −
1
𝑒𝑒

 

Figure 3 provides the development pattern under a Weibull distribution for fixed c and 

varying values for B. Much faster development is observed for lower B values while higher 



scale parameter values substantially slow down the development pattern. 

 

Figure 3. Weibull cumulative development pattern with fixed shape and varying scale parameter 

According to Figure 4, the shape parameter, c, also impacts the length of the tail. Lower 

values increase the tail length while higher values shorten the length assuming similar ranges 

of B. The distribution also becomes more S-shaped with an increasing c value.  



 

Figure 4. Weibull cumulative development pattern with fixed scale and varying shape parameter 

2.5 Parameterizing the Weibull Development Prior 

Not all cedents have a full triangle or enough data to estimate a complete development 

pattern. Our dataset included 10 companies with triangulated individual claims. Of those 

companies, 8 had enough data with which to estimate a development pattern. This subset of 

cedents is used to parameterize the development pattern prior distributions. A Weibull 

distribution is assumed to describe the cumulative excess development pattern for each cedent 

with sufficient triangulated data. Judgement needs to be used as it typically is in selecting LDFs 

and the tail factor. Once a pattern is selected for each cedent, a Weibull distribution is fit to 

that pattern using maximum likelihood or any other suitable fitting algorithm so that a 

portfolio of Weibull parameters is constructed. Our frequency model included 8 shape and 8 

scale parameters, one set of parameters for each cedent having enough data to generate a 

development pattern. 

A distribution fitting exercise performed on the set of Weibull shape parameters and 

another distribution fitting on the set of scale parameters produces marginal prior distributions 

for c and B. Gamma prior distributions were a reasonable fit for each parameter: 

𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝~ Г(𝛼𝛼𝑐𝑐_𝑠𝑠ℎ𝑎𝑎𝑝𝑝𝑎𝑎 ,𝛽𝛽𝑐𝑐_𝑠𝑠𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎) 



𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝~ Г(𝛼𝛼𝐵𝐵_𝑠𝑠ℎ𝑎𝑎𝑝𝑝𝑎𝑎 ,𝛽𝛽𝐵𝐵_𝑠𝑠𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎) 

αc_shape, βc_scale, αB_shape and βB_scale are all fixed values based on the distribution fit. 

 
Figure 5. Weibull parameter joint distribution resembles a Clayton copula 

Plotting combinations of c and B values for each cedent generates the graph in Figure 5. It 
appears that the c and B values are not independent but have positive correlation. To keep 
this relationship in our frequency model, we introduced a copula dependence between each 
company’s c and B values. 

Different subsets of data may be modelled with different copula functions. A bivariate 

Clayton copula is the best fit to our data as determined by the Akaike information criterion 

(AIC). Figure 6 shows resulting AIC rankings and data points from the fitted joint distribution. 



 

Figure 6. Fitted Clayton copula and Akaike information criterion rankings   

We use the following notation for the cumulative density of a Clayton copula: 

𝐶𝐶(𝑢𝑢, 𝑣𝑣) = �𝑢𝑢−𝜃𝜃 + 𝑣𝑣−𝜃𝜃 − 1�
−1𝜃𝜃 

Modeling shape and scale dependence assuming a fixed value of θ results in posterior 

parameter estimates that fit the original data rather well. When plotted on a unit scale in Figure 

7, one can clearly see the greater (left) negative tail dependence exhibited by both the observed 

data points and the Bayesian posteriors. 



 

Figure 7. Posterior Weibull parameters plotted against cedent data 

 
2.6 Implied Credibility and the Value of a Triangle 

An implied credibility factor, 𝑍𝑍𝑝𝑝 , can be calculated for each cedent by specifying: 

𝜆𝜆𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖] = (1 − 𝑍𝑍𝑝𝑝) ∗ 𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖] + 𝑍𝑍𝑝𝑝 ∗ 𝜆𝜆𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑎𝑎𝑠𝑠[𝑖𝑖] 

where 𝜆𝜆𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑎𝑎𝑠𝑠[𝑖𝑖] is the maximum likelihood estimate of the Poisson rate parameter based 

only on the ith cedent’s data. In practice we found these values by running the frequency model 

with uninformative priors.  

In Figure 8 we plot the implied credibility factor for each cedent against the expected 

number of claims based on the prior. Using the actual number of claims as a basis for 

credibility has a problem in that observing zero claims may actually contain significant 

information, for example if one hundred claims were expected to be observed. The chart also 

identifies cedents where a full claim count triangle was available as opposed to only the latest 

diagonal. 



 

Figure 8. Implied Frequency Credibility Comparison 

We can see that the majority of cedents had frequency credibility above 40%. A desirable 

and intuitive feature of the model is that it assigns higher credibility to cedents with 

triangulated data than those only providing losses from the last diagonal. No cedents with 

losses in triangulated form had frequency credibility falling below 40%. Cedents assigned the 

lowest credibility were all companies without triangles. This result is difficult to capture with 

traditional actuarial methods and is a distinct advantage of our Bayesian model. 

Figure 9 plots the Weibull parameter joint probability densities for a certain company in 

our study. The graph plots a heatmap of the prior distribution in yellow and two posterior 

distributions in green and red. The range of parameters for the prior distribution is much wider 

and follows the gamma marginal distributions and Clayton copula described in Section 2.5. 

Both posterior distributions are concentrated within the company’s prior distribution. 



 

Figure 9. Comparison of Weibull Parameter Joint Distributions 

The area in green represents the posterior distribution when only the last diagonal of excess 

claim count data is entered into the frequency model. What’s happening is that this company 

has, to the extent we can know, lower ultimate frequency than the mean of the prior 

distribution. When we observe the latest diagonal of observed claims, it is lower than expected. 

However, that could also be due to slow development. Without a triangle, the model must 

consider that possibility according to the prior distributions and Bayes’ Theorem. The result 

is the posterior distribution in green, which is very wide but populates mostly the “slow” 

region of the development parameter space (recall that higher values of c and B imply a slower 

development pattern). 

Compare this to the area in red which is the frequency model’s posterior distribution using 

a full triangle of excess claim counts. Triangulated data produces more concentrated c and B 

values because of the increased certainty in the development pattern compared to only having 

the latest diagonal. What’s happening is that the model has much more information with which 

to reject the slow development hypothesis indicated by the low observed claim counts. 

Increasing the certainty of the development pattern while holding observed claim counts 

constant means that the model can be more certain that the ultimate frequency actually is 

lower than the prior mean, which is what occurred in this case. 



Interestingly, the full triangle posterior is concentrated around the center of the prior but 

looks like an extreme outlier relative to the green distribution. The full triangle posterior can 

also be viewed as a Bayesian posterior with the green distribution as prior, with the marginal 

additional information being the claim counts in the interior of the triangle. This is what we 

mean by the “value of a triangle.” The triangle’s interior claim count data contains significant 

information about the pattern and ultimate frequency of a company’s large losses, a fact that 

is often overlooked or only accounted for subjectively in a reinsurance pricing analysis. 

2.7 Case Study 

A frequency data input file with two mock companies is provided in Appendix B. Only last 

diagonal data is given for Company 1 which has three excess claims over an 11-year period. 

Company 2 has 149 excess claims over the same period and data is available in triangulated 

form. A $500,000 threshold is used in this example. Parameters for the prior distributions are 

illustrative and programmed into the R/Stan codes in Appendix B. 

Posterior means,2 standard deviations, distribution percentiles and MCMC convergence 

plots from the Bayesian model are presented in Figure 10. Company 2 has a smaller standard 

deviation around the posterior mean ultimate frequency due to a larger volume of claim count 

data and the availability of an excess claim count triangle. Using the formula in section 2.6, the 

implied credibility for Company 2 is 90% compared to 8% for Company 1. Note that implied 

credibilities are commensurate with the claim count versus credibility plot in Figure 8. 

However, they do not perfectly line up because prior distribution parameters for this case 

study are not the same.  

Company 2 also has tighter ranges in the Weibull parameter posterior distributions. This is 

clearly seen in the MCMC convergence plots and evidenced by the relatively smaller standard 

deviation around posterior c and B means. There is increased certainty in the development 

pattern for Company 2 when compared to Company 1. A full triangle of excess claim counts 

provides the model with more confidence that the ultimate frequency for Company 2 is 

actually lower than the prior mean. The model can reject the hypothesis that lower-than-

average observed claim counts are due to slow development.  

 
 
2 Ultimate frequency is calculated per $10M of premium in sample R code 



On the other hand, Company 1 has low observed claim counts and only last diagonal data. 

The model does not have enough information to reject the slow development hypothesis. 

Therefore, a wider range of c and B values is contained in the posterior distributions.  

 

Figure 10. Bayesian frequency model posterior output and MCMC convergence plots 

A visual comparison of joint probabilities densities is presented in Figure 11. The graph for 

Company 1 resembles the yellow prior distribution heatmap from Figure 9. With an implied 

credibility of only 8%, a wider range of distribution parameters makes sense. Low credibility 

assignments by the frequency model will yield posterior distributions that are closer to the 

prior distribution. 

In contrast, the graph for Company 2 looks similar to the red area in Figure 9. A full triangle 

of excess claim counts produces more concentrated posterior joint probability densities. The 

model has more information with which to reject a larger number of parameter values. 



This case study included two sample companies. However, the input files and code are set 

up to receive a more extensive number of cedents for simultaneous modeling. We encourage 

users to experiment with their own excess reinsurance portfolios.  

 

Figure 11. Weibull parameter joint distribution 

3. SEVERITY MODEL 

We also develop a Bayesian model for claim severity as depicted in Figure 12. We assume 
claims are Pareto distributed above the threshold. The shape parameter of the Pareto is 
allowed to differ by company. The Bayesian model weighs observed individual claim amounts 
against the prior distribution of each company’s shape parameter, and we use stan/R/MCMC 
to calculate the posterior distribution, in particular the posterior mean, of each company’s 
pareto shape parameter. 

One additional consideration is made to account for severity development, which is non-
trivial in many long-tailed lines of business. We treat this in a simplified way by applying an 
age factor to the “ultimate” company Pareto 𝛼𝛼. We stop short of the more complicated model 
in (McNulty 2017). 

We assume there is no trend in the excess severity, as would be consistent with a Pareto 
distribution. Note that ground up severity trend is accounted for in the trend factors for excess 
frequency at the chosen threshold. 

 



 
Figure 12. Diagram of Hierarchical Bayesian Severity Model 

3.1 Gamma-Pareto Ultimate Severity 

We use the following parameterization of the Pareto and gamma distributions with excess 

threshold T: 

𝑓𝑓(𝑥𝑥;𝛼𝛼,𝑇𝑇) = �
𝛼𝛼𝑇𝑇𝛼𝛼

𝑥𝑥𝛼𝛼+1
� ; 𝑥𝑥 > 𝑇𝑇 

𝑓𝑓(𝑥𝑥; 𝜀𝜀,𝛽𝛽) ~ 
𝛽𝛽𝜖𝜖

Γ(𝜖𝜖)
𝑥𝑥𝜀𝜀−1𝑒𝑒−𝛽𝛽𝑥𝑥 

Instead of using 𝛼𝛼,𝛽𝛽 as parameters of the gamma distribution we are utilizing 𝜀𝜀,𝛽𝛽 to avoid 

confusion with the Pareto 𝛼𝛼.  

3.2 Parameterizing the 𝜶𝜶 Prior 

A prior mean for each company’s uncertain 𝛼𝛼 Pareto shape parameter, denoted by 𝛼𝛼�, is 

established for each company in the portfolio. See Table 2. As with the ultimate frequency 

prior it is derived using an exposure rating method for this paper, but other methods of 

determining an a priori are also acceptable. The Pareto fitting exercise to determine each 

cedent’s 𝛼𝛼� prior mean is only performed on the portion of the curve between T and $1M. 

Cedent data is right censored at policy limits. The most common commercial general liability 

limit in our data was $1M.  



Similar to what we saw in the previous section on ultimate frequency, the array of best fit 

𝛼𝛼� prior means was well fit by a gamma distribution. The variance parameter from that fit, β, 

we then use as a universal value for β in the gamma prior distribution of each company’s 

uncertain Pareto 𝛼𝛼 severity shape parameter. The mean of a gamma distribution is 𝜀𝜀/𝛽𝛽. 

Therefore, we have for each company: 

𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑐𝑐𝑝𝑝[𝑝𝑝] ~ Г(𝛽𝛽 ∗ 𝛼𝛼�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑐𝑐𝑝𝑝[𝑝𝑝],𝛽𝛽) 

 

Table 2. Pareto α Priors by Cedent 

3.3 Pareto 𝜶𝜶 Development 

If we observe a certain Pareto 𝛼𝛼 in early ages, the ultimate 𝛼𝛼 might not be the same because 
excess claim severity, for example in the $500K excess $500K layer, develops just as excess 
claim counts develop. A development pattern needs to be determined for the 𝛼𝛼 parameter. A 
factor from this pattern is applied to 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑐𝑐𝑝𝑝[𝑝𝑝] values, which are at ultimate, to bring the 
severity expectation to a level corresponding to the age of each observed claim. 

We assume a fixed 𝛼𝛼 development pattern in the severity model. The pattern is obtained 
by creating an aggregated triangle of claim count data, excess of threshold T. Data is compiled 
from cedent loss listings that provide individual loss development. A development triangle of 
Pareto 𝛼𝛼’s by year and age can be constructed from the excess claim count triangle. This can 
be done because given the distribution of individual claims in each cell of the triangle, a fitted 
Pareto shape parameter can be determined by maximum likelihood, moment matching, or 
fitting to percentiles such as the survival at $1M.  



A cumulative α development pattern is then determined, similar to a selected development 
pattern from a triangle of link ratios. Unlike for frequency, we allow for no uncertainty in this 
pattern, or variation between cedents. In reality, there is uncertainty in this pattern. There is 
likely variation between cedents and there may even be correlation between a cedent’s 
frequency development and their severity development. These considerations would be good 
additions to a more complex model which we stopped short of in this paper.  

Below is a graph of the selected pattern used for our application of the severity model: 

 
Figure 13. Fixed Pareto α development 

3.4 Accounting for Policy Limit Capping 

One complication that arises in some liability coverages in the US market is the presence 
of policy limits. Especially in a reinsurance application to large losses as in this paper, a 
significant portion of individual loss indemnity amounts excess of $500,000 will be exactly 
equal to the policy limit of $1 million.  

This is censoring of the data and fitting distributions when presented with censored data is 
treated in Loss Models (Klugman, Panjer and Willmot 2012). In a traditional maximum 
likelihood fitting exercise, to incorporate data censored above at T, instead of using the pdf 
value at T for those points the survival function is used which is the cumulative probability of 
the observation being greater than or equal to the censored value.  

Our model uses Bayesian MCMC instead of maximum likelihood, but the principle is the 
same and the severity model code (see attached files) uses the complementary cumulative 



distribution function for the marginal probability associated with censored data points. The 
complementary cumulative distribution function is also known as the survival function and is 
one minus the CDF. 

3.5 Estimating Posterior Distributions 

The Bayesian model to estimate posterior distributions using the data is more 
straightforward for severity. Pseudo-code for the severity model would read as follows: 

Claims size ~ Pareto (T, 𝛼𝛼𝑐𝑐𝑝𝑝𝑒𝑒𝑝𝑝𝑎𝑎𝑐𝑐𝑐𝑐 𝑝𝑝  * age adjustment) 

Only the company 𝛼𝛼 is uncertain with its own distribution since the age adjustments are 
fixed values by age. In the actual model, extra steps are made to implement the policy limit 
censorship adjustment where the cumulative distribution function (CDF) is used for the 
marginal probability of censored values versus the probability distribution function (PDF) for 
uncensored values. See (Panjer et. al. 2012) for more detail on fitting distributions to truncated 
and censored data. 

3.6 Results 

The Stan program simulates the posterior distribution of each company’s Pareto shape 
parameter. Although technically the compound Pareto mixture with variable 𝛼𝛼 may be a more 
complex distribution (McNulty 2021), we simply took the mean of the posterior distribution 
of the 𝛼𝛼 as a fixed value. This gave us a Pareto distribution for each company’s claims excess 
of T, which is a Bayesian blending of the prior distribution and the data, although not 
technically the full posterior distribution. 

Interestingly we found that there was less “credibility” in the severity data than for 
frequency. The chart below shows the implied credibility factors, 𝑍𝑍𝑝𝑝 , such that: 

𝛼𝛼𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖] = (1 − 𝑍𝑍𝑝𝑝) ∗ 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖] + 𝑍𝑍𝑝𝑝 ∗ 𝛼𝛼𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑎𝑎𝑠𝑠[𝑖𝑖] 

where 𝛼𝛼𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑎𝑎𝑠𝑠[𝑖𝑖] is the maximum likelihood estimate of the Pareto shape parameter based 
only on the ith cedent’s data. In practice we found these values by running the severity model 
with uninformative priors. 



 
Figure 14. Implied severity credibility for various observed claim counts 

We can see in Figure 14 that the majority of cedents had severity credibility below 30%, 
and even in the case of the cedents with the most claims the credibility was at most 80%. 

3.7 Case Study 

A severity data input file with two mock companies is provided in Appendix B. The sample 
dataset was created and perturbed independently from the frequency dataset. Thus, the total 
number of claims and number of claims per year might not match the frequency input file. 
However, the information is more than sufficient to serve as a concrete example for the 
severity model. 

Company 1 has five excess claims over a 10-year period. Company 2 has 64 claims over a 
14-year period. As with the frequency model case study, a $500,000 threshold is used in this 
example. Parameters for the prior distributions are illustrative and programmed into the 
R/Stan codes in Appendices B. 

Posterior means, standard deviations, distribution percentiles and MCMC convergence 
plots from the Bayesian model are in Figure 15. In the severity model R code shown in 
Appendix B, the company prior 𝛼𝛼 values are shown as (0.95, 1.05). Company 1, which has 
barely any data, results in a posterior mean of 0.95 after running the model, i.e., exactly the 
same as the prior. This is consistent with the expected implied credibility based on Figure 14 
of 0% for such a low claim count. 

Company 2, on the other hand, has a significant amount of data that would result in an 
implied credibility of perhaps 30% to 40% weight towards the empirical Pareto 𝛼𝛼 (assuming a 



similar credibility profile as Figure 14 and a claim count of 64), and away from the prior 𝛼𝛼 of 
1.05 as specified in the code. The posterior mean 𝛼𝛼 as shown in Figure 15 is 1.21, meaning 
that Company 2 displays lower than average severity in the excess layer, after adjusting for 
policy limits and severity development. 

As with the frequency model case study, input files and R/Stan codes are set up to receive 
a more extensive number of cedents for simultaneous modeling. The model is set up to handle 
entire portfolios or large subsets of reinsurance portfolios.  

 

Figure 15. Bayesian severity model posterior output and MCMC convergence plots 

3.8 Treatment of ALAE 

The model developed to this point in Section 3 has concerned indemnity only. In the US 
market, claims in long tailed lines of business often incur significant loss adjustment expense, 
or ALAE, in addition to indemnity. A full model of large casualty losses for reinsurance in the 
US needs to have a provision for ALAE, which can be treated as included in-addition or pro-
rata with loss for determining the reinsured portion of ALAE. 

The standard way of modeling ALAE would be to multiply every indemnity loss by a factor, 
for example 1.2, to gross up to a loss amount with ALAE. This is what the authors did in 
implementing the method in this paper for use in reinsurance pricing. There is a more realistic, 
although also more complicated, model for ALAE which fits a separate distribution for ALAE 
amounts, and then models the bivariate distribution of ALAE and indemnity with a copula. 
That model would be beyond the scope of this paper but see, e.g., (Micocci and Masala 2009) 
for more information. 



4. COMPARISON TO EXISTING METHODS 

The defining features of the model developed in this paper, and the reason why we believe 
it is novel research, is that we address both problems of severity development and uncertainty 
in the claim count development in a Bayesian large loss model. We wanted to highlight some 
other papers that come the closest and compare the differences and similarities between the 
methods. 

4.1 Cockroft/Buhlmann 

Cockroft, in his 2004 paper (Cockroft 2004), develops what we would call a classical 
credibility treatment for excess of loss claims. He derives the formulas for applying Buhlmann 
best linear approximation to the Bayesian posterior mean in the case of a compound Gamma-
Poisson, Gamma-Pareto model. 

There are a few elements developed in our paper which we believe are advantages. First, 
the Cockroft treatment does not allow for claim development, so it is more suitable for short-
tailed lines of business. For long-tailed lines, where claim development and uncertainty in the 
development pattern are keys to estimating the mean, we suggest incorporating the methods 
from this paper. 

Trend is another very important parameter in any reinsurance pricing. Cockroft’s paper 
assumes all data is trended before fitting the model. In practice this would make it difficult to 
include trend as an uncertain parameter in a Bayesian analysis. We also chose to use fixed trend 
factors, but since the trend factor is explicitly used in our frequency model with untrended 
data, we could easily give the trend a prior distribution. This would allow for uncertainty in 
the posterior and cedent specific differentiation. 

On the severity side, Cockroft does not address policy limit capping, whereas we have 
explicitly incorporated it into our severity model and provided code for practitioners who may 
have policy limit censored data. 

Finally, the Buhlmann method is fundamentally concerned with a best estimate of the mean 
and develops a best linear approximation. Cockroft goes further by deriving full posterior 
distributions for some quantities of interest but not all. Since R and Stan are simulation based, 
it would be easy to define the mean layer loss as a variable and observe the MCMC samples 
of the full distribution of the posterior. It’s also not clear that in the case of reinsurance, with 
heavily right-skewed distributions that the best linear approximation to the posterior mean is 
a good approximation. 



4.2 Barnett 

The authors wanted to highlight (Barnett 2020) as it is one of the only papers we found 
that addressed the issue of development in a Bayesian large loss or reinsurance excess of loss 
model. In order to stay practical, the author develops the model in tables and spreadsheets 
which makes it more usable but probably limits the complexity of the model. For example, 
the model does not consider uncertainty in the development pattern, which we believe to be 
a key factor in reinsurance excess of loss estimation. 

Note that Bayesian reserving models or models for estimating ground up loss ratios which 
do incorporate uncertainty in the development pattern have been well developed by, e.g., 
(Zhang, Dukic and Guszcza 2012) and (Clark 2003). 

4.3 Mildenhall 

Mildenhall’s 2006 paper, “A Multivariate Bayesian Claim Count Development Model With 
Closed Form Posterior and Predictive Distributions” (Mildenhall 2006) introduced a 
completely new model, breaking the Buhlmann mold. The model uses Gamma-Poisson 
ultimate claim counts and a multinomial Dirichlet claim count development distribution. 

The greatest achievement of this paper is that it addresses the fundamental question of 
weighing uncertainty in the ultimate frequency against uncertainty in the development pattern. 
The author includes a very enlightening chart on page 472 that shows where established 
reserving methods lie on the spectrum of the relative size of the uncertainty in those two 
parameters.  

In contrast to Mildenhall, we prefer the simpler Weibull development pattern distribution 
to the multinomial Dirichlet for several reasons. The Weibull is a 2-parameter distribution, 
and as discussed above there are intuitive visual interpretations of the parameters. This can be 
beneficial when priors are specified using judgment. In contrast, the Dirchlet has as many 
parameters as there are development ages (minus one) and so it would be difficult to intuitively 
judge or visualize the prior. This also leads the total model to have n + 2 parameters when 
there are n time periods as stated in Section 7 of the paper, whereas the model presented in 
this paper has a total of seven3 parameters independent of how many time periods there are. 

 
 
3 The seven parameters being 2 Gamma parameters for the prior ultimate frequency, 2 Gamma parameters for 
the prior of each of the 2 Weibull parameters, one Clayton copula parameter. One could argue that the copula 
parameter, rather than adding a degree of freedom, reduces the degrees of freedom in the model by constraining 
the independence of the two Weibull parameters. Viewed this way, the degrees of freedom would be between 5 
and 6. 



Another advantage of the Weibull is that it is continuous which means that we are easily 
able to incorporate information from a partial diagonal of a triangle or data at different ages, 
such as a 12-month triangle with a six-month latest diagonal which is quite common in 
reinsurance practice. The multinomial Dirichlet is discrete with each point representing one 
time period which would typically be a year. It’s not clear how a practitioner would deal with 
data that is at different ages. 

Lastly, consider the following statement from the Mildenhall paper on page 468: 

“Proposition 4 shows the predictive distribution does not depend on the individual 
observed values b1, •.. , bt but only on their sum b(t) = b1 +·· ·bi. Thus, the GPDM 
model has a kind of Markov property that the future development depends only on 
the total number of claims observed to date, and not on how those claims were 
reported over time.” 

The authors of this paper would argue that the Markov property is unintuitive for insurance 
losses. The times at which various claims have been reported in the past contains valuable 
information about future development. This was demonstrated in Section 2 which showed 
that the frequency model can provide a much more concentrated posterior for the 
development pattern in the case of a cedent who provides a full triangle. If only the latest 
diagonal or total number of claims reported to date mattered in the model, i.e., the model 
demonstrated the Markov property, then we would get the same results when giving the full 
triangle or simply the latest diagonal. We view the absence of the Markov property to be a 
fundamental advantage of our model. 
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6. APPENDIX A 

Frequency Model One-Page Step-by-Step Guide: 

1. Parameterize the prior distribution of Poisson 𝜆𝜆 
1.1. Collect samples of the exposure-based frequency of claims excess of a universal 

threshold, e.g., $500k, for several (ideally 10+) cedents 
1.2. Fit a gamma distribution to the set of frequencies stated as a ratio to a common 

exposure measure, such as $10M premium as used in the paper. The variance 
parameter of this fit determines our industry/market prior distribution for the 
Poisson 𝜆𝜆 of an individual cedent. The mean of the prior 𝜆𝜆 for an individual cedent 
can be that recorded from step 1. The overall mean is an alternative. 

2. Parameterize the Weibull claim count pattern prior distribution 
2.1. Collect a subsample of experience data that has a full triangle of development 

available 
2.2. Use traditional techniques to choose an LDF pattern for each triangle 
2.3. Fit a Weibull distribution to each development pattern using percentile matching or 

a visual match method. Record the best fit Weibull parameters, c and B in our 
parameterization, for each cedent. 

2.4. Fit a gamma distribution to the list of c’s and another gamma to the B’s 
2.5. Fit a copula to the percentiles of each (𝑐𝑐,𝐵𝐵) pair after transforming the c and B 

values to percentiles via the gamma fit, e.g., 𝐹𝐹−1(𝑐𝑐) 
3. Run the Bayesian model 

3.1. Input the parameters found in steps 1 and 2 into the code for the frequency model 
3.2. Input the data on excess claim counts in the tabular format explained in the paper 
3.3. Run the code 
3.4. Enjoy your posterior excess frequency per exposure distributions which will differ 

by cedent. Assuming claims will be Poisson distributed with expected claims equal 
to the mean should be fine, a Poisson mixed with a gamma frequency parameter is 
technically negative binomially distributed. Although the pattern posteriors are not 
needed directly after this stage for estimating expected loss to the reinsurance layer, 
it can be of interest to see the relative certainty in each cedent’s pattern and confirm 
agreement with which cedents are deemed fast or slow. 

  



Severity Model One-Page Step-by-Step Guide: 

1. Parameterize the prior distribution of Pareto 𝛼𝛼 
1.1. Collect samples of the exposure-based severity distribution of claims excess of a 

universal threshold, e.g., $500k, for several (ideally 10+) cedents 
1.2. Fit a Pareto to each of the collected severity distributions and record the best fit 

Pareto 𝛼𝛼 parameter. A good ad hoc method would be to match the survival at $1M 
using the Pareto CDF. 

1.3. Fit a gamma distribution to the set of 𝛼𝛼’s. The variance parameter of this fit 
determines our industry/market prior distribution for the Pareto 𝛼𝛼 of an individual 
cedent. The mean of the prior gamma for an individual cedent can be the actual 
fitted 𝛼𝛼 from step 2 if desired. The overall mean is an alternative. 

2. Create a deterministic Pareto 𝛼𝛼 development pattern 
2.1. Using available triangulated excess claim amount data, calculate a best fit 𝛼𝛼 for each 

cell of the triangle. This can be somewhat complicated by the presence of policy 
limited data. A simplification is just determining the percent of claims that exceed 
$1M given they are already over $500k. The implied 𝛼𝛼 can be computed by inverting 
the CDF of the Pareto distribution with threshold $500k. 

2.2. Using traditional actuarial techniques, determine a set of development factors 
between successive ages of the triangle, for example a straight average of link ratios 
in the triangle, or perhaps a recent 5-year average. 

2.3. Convert the selected development factors into a pattern representing percent of 
ultimate. Note that we are developing Pareto 𝛼𝛼’s, not total claims or incurred 
amounts. The age 1 numbers may develop downward in some applications. 

3. Run the Bayesian model 
3.1. Input the parameters found in steps 1 and 2 into the code for the severity model 
3.2. Input the data on excess claim amounts in the format provided. Note only latest 

diagonal is needed for severity 
3.3. Run the code 
3.4. Enjoy your posterior Pareto 𝛼𝛼 distributions which will differ by cedent. Note that 

the full posterior distribution is not a Pareto with 𝛼𝛼 equal to the mean of the 𝛼𝛼’s 
posterior distribution, although the authors use this simplification in practice. See 
the Pareto-Gamma Mixture paper. 

 

 



7. APPENDIX B 

The following sample input files are used for the frequency and severity models, 
respectively, and called from the R code: 
 
freq data.csv 

 
company year premium obs_start obs_end incr_claims 
1 2010 3000000 0 11 1 
1 2011 3000000 0 10 0 
1 2012 2000000 0 9 0 
1 2013 2000000 0 8 0 
1 2014 2000000 0 7 1 
1 2015 2000000 0 6 1 
1 2016 2000000 0 5 0 
1 2017 2000000 0 4 0 
1 2018 2000000 0 3 0 
1 2019 4000000 0 2 0 
1 2020 4000000 0 1 0 
2 2010 350000000 0 1 1 
2 2010 350000000 1 2 4 
2 2010 350000000 2 3 6 
2 2010 350000000 3 4 2 
2 2010 350000000 4 5 3 
2 2010 350000000 5 6 3 
2 2010 350000000 6 7 0 
2 2010 350000000 7 8 2 
2 2010 350000000 8 9 0 
2 2010 350000000 9 10 1 
2 2010 350000000 10 11 0 
2 2011 330000000 0 1 2 
2 2011 330000000 1 2 4 
2 2011 330000000 2 3 3 
2 2011 330000000 3 4 3 
2 2011 330000000 4 5 7 
2 2011 330000000 5 6 0 
2 2011 330000000 6 7 4 
2 2011 330000000 7 8 1 
2 2011 330000000 8 9 0 
2 2011 330000000 9 10 0 
2 2012 320000000 0 1 1 
2 2012 320000000 1 2 4 
2 2012 320000000 2 3 3 
2 2012 320000000 3 4 3 
2 2012 320000000 4 5 3 



2 2012 320000000 5 6 3 
2 2012 320000000 6 7 1 
2 2012 320000000 7 8 0 
2 2012 320000000 8 9 0 
2 2013 320000000 0 1 1 
2 2013 320000000 1 2 5 
2 2013 320000000 2 3 2 
2 2013 320000000 3 4 1 
2 2013 320000000 4 5 6 
2 2013 320000000 5 6 3 
2 2013 320000000 6 7 1 
2 2013 320000000 7 8 0 
2 2014 300000000 0 1 0 
2 2014 300000000 1 2 2 
2 2014 300000000 2 3 4 
2 2014 300000000 3 4 6 
2 2014 300000000 4 5 4 
2 2014 300000000 5 6 4 
2 2014 300000000 6 7 0 
2 2015 300000000 0 1 1 
2 2015 300000000 1 2 3 
2 2015 300000000 2 3 6 
2 2015 300000000 3 4 4 
2 2015 300000000 4 5 3 
2 2015 300000000 5 6 0 
2 2016 310000000 0 1 0 
2 2016 310000000 1 2 5 
2 2016 310000000 2 3 4 
2 2016 310000000 3 4 6 
2 2016 310000000 4 5 0 
2 2017 310000000 0 1 0 
2 2017 310000000 1 2 3 
2 2017 310000000 2 3 5 
2 2017 310000000 3 4 0 
2 2018 300000000 0 1 2 
2 2018 300000000 1 2 4 
2 2018 300000000 2 3 0 
2 2019 290000000 0 1 0 
2 2019 290000000 1 2 0 
2 2020 300000000 0 1 0 

 
 
 
 
 



sev data.csv 
 
year co age incurred 
2009 1 12 750000 
2010 1 11 1000000 
2014 1 7 960000 
2015 1 6 900000 
2018 1 3 1000000 
2005 2 16 585606 
2005 2 16 620319 
2005 2 16 935383 
2005 2 16 601001 
2005 2 16 1000000 
2006 2 15 1000000 
2006 2 15 1000000 
2006 2 15 650595 
2006 2 15 1000000 
2006 2 15 1000000 
2006 2 15 660747 
2006 2 15 1000000 
2006 2 15 1000000 
2006 2 15 1000000 
2007 2 14 1000000 
2007 2 14 677013 
2007 2 14 682349 
2007 2 14 551249 
2008 2 13 1000000 
2008 2 13 1000000 
2008 2 13 833795 
2008 2 13 1000000 
2008 2 13 835682 
2008 2 13 1000000 
2008 2 13 563742 
2009 2 12 1000000 
2009 2 12 789589 
2009 2 12 676473 
2009 2 12 709377 
2009 2 12 623965 
2009 2 12 1000000 
2009 2 12 1000000 
2009 2 12 879431 
2009 2 12 666018 
2010 2 11 1000000 
2010 2 11 785643 
2010 2 11 818112 



2010 2 11 937688 
2011 2 10 573665 
2011 2 10 626129 
2011 2 10 730101 
2012 2 9 728281 
2012 2 9 1000000 
2012 2 9 607633 
2012 2 9 780319 
2013 2 8 755611 
2013 2 8 572497 
2013 2 8 577085 
2014 2 7 627388 
2014 2 7 706466 
2014 2 7 722980 
2014 2 7 584997 
2014 2 7 600185 
2014 2 7 530892 
2015 2 6 599592 
2015 2 6 729452 
2015 2 6 1000000 
2015 2 6 679767 
2015 2 6 702421 
2015 2 6 1000000 
2015 2 6 1000000 
2016 2 5 1000000 
2016 2 5 1000000 
2018 2 3 600695 

 
Below are the code files for the frequency and severity stan models, respectively, and 
called from the R code: 
 
stan code freq model.stan 

 
functions { 
  real clayton_log_pdf(real u, real v, real theta) { 
    return log((1+theta)*pow(u*v,-1-theta)*pow(pow(u,-theta)+pow(v,-theta)-1,-
((2*theta+1)/theta))); 
  } 
} 
data { 
  int<lower=0> N_obs; 
  int<lower=0> N_obs_start; 
  int<lower=0> N_obs_end; 
  int<lower=0> N_companies; 
  real beta; 
  real premium[N_obs]; 



  real co_lambda_prior[N_companies]; 
  int<lower=0> year[N_obs]; 
  real<lower=0> obs_start[N_obs]; 
  real<lower=0> obs_end[N_obs]; 
  int<lower=0> company[N_obs]; 
  int<lower=0> incr_claims[N_obs]; 
} 
parameters { 
real<lower=0> company_freq[N_companies]; 
real<lower=0> weibull_c[N_companies]; 
real<lower=0> weibull_B[N_companies]; 
} 
transformed parameters { 
real pois_lambda[N_obs]; 
real normalized_weibull_c[N_companies]; 
real normalized_weibull_B[N_companies]; 
 for( i in 1 : N_obs ) { 
  pois_lambda[i] = company_freq[company[i]] * premium[i] * (exp(-
pow((obs_start[i]/weibull_B[company[i]]),weibull_c[company[i]])) - exp(-
pow((obs_end[i]/weibull_B[company[i]]),weibull_c[company[i]])))*pow(1/1.1,2022-year[i]);  
 } 
  for ( i in 1 : N_companies) { 
    normalized_weibull_c[i] = gamma_cdf(weibull_c[i], 13,9); 
  } 
    for ( i in 1: N_companies) { 
    normalized_weibull_B[i] = gamma_cdf(weibull_B[i], 8,2); 
  } 
} 
model { 
for (i in 1:N_companies){ 
 weibull_c[i] ~ gamma(13,9); 
} 
for (i in 1:N_companies){ 
 weibull_B[i] ~ gamma(8,2); 
} 
for (i in 1:N_companies){ 
  target += clayton_log_pdf( normalized_weibull_c[i], normalized_weibull_B[i], 2.75 ); 
} 
for (i in 1:N_companies){ 
 company_freq[i] ~ gamma(beta*co_lambda_prior[i],beta); 
} 
for (i in 1:N_obs){ 
 incr_claims[i] ~ poisson(pois_lambda[i]); 
  } 
} 
generated quantities { 
} 

 



stan code sev model.stan 
 
data { 
  int<lower=0> N_claims; 
  int<lower=0> N_years; 
  int<lower=0> N_ages; 
  int<lower=0> N_companies; 
  real threshold; 
  real beta; 
  real <upper = 1000000> incurred[N_claims]; 
  real age_factor[N_ages]; 
  real co_alpha_prior[N_companies]; 
  int<lower=0> year[N_claims]; 
  int<lower=0> age[N_claims]; 
  int<lower=0> co[N_claims]; 
  int<lower = 0, upper = 1> censored[N_claims]; 
} 
parameters { 
real<lower=0> co_alpha[N_companies]; 
} 
transformed parameters { 
real claim_alpha[N_claims]; 
 for( i in 1 : N_claims ) { 
  claim_alpha[i] = co_alpha[co[i]] * age_factor[age[i]];   
 } 
} 
model { 
for (i in 1:N_companies){ 
 co_alpha[i] ~ gamma(beta * co_alpha_prior[i], beta); 
} 
for (i in 1:N_claims){ 
 if (censored[i]) { 
         target += pareto_lccdf( incurred[i] | threshold, claim_alpha[i]);   
      } else { 
         target += pareto_lpdf( incurred[i] | threshold, claim_alpha[i]); 
    } 

} 
} 
generated quantities { 
} 
 
 
 
 
 
 
 



Next are the companion R code files for running the models: 
 
r code freq model.R 
 
library(dplyr) 
library(distr) 
library(fitdistrplus) 
library(actuar) 
library(rstan) 
library(readr) 
library(rstudioapi) 
library(bayesplot) 
library(ggplot2) 
#setwd 
setwd("C:/folder") 
##import data 
data <- read_csv("freq data.csv",  
                            col_types = cols(company = col_integer(), 
                                             year = col_integer(),   
                                             premium = col_double(), 
                                             obs_start = col_double(), 
                                             obs_end = col_double(), 
                                             incr_claims = col_integer())) 
##make the data list 
attach(data) 
##co priors are for the prior ultimate freq per 10M premium for each company 
co_lambda_prior <- c(1.5,2.5) 
##universal beta param for ultimate claim count gamma distributions 
beta<- 9 
##transform data 
##our frequencies are stated per $10M of premium so rescale the premium data to match 
premium<-premium/10000000 
data_list <- list(   
  year = year, 
  obs_start = obs_start, 
  obs_end = obs_end, 
  incr_claims = incr_claims, 
  company = company, 
  premium = premium, 
  co_lambda_prior = co_lambda_prior, 
  beta = beta, 
  N_obs = length(incr_claims), 
  N_obs_start = max(obs_start), 
  N_obs_end = max(obs_end), 
  N_companies = max(company)) 
##run stan 



fit<- stan(file = 'stan code freq model.stan', data=data_list, iter=10000, chains = 4, cores = 4, 
seed =123) 
## plot output 
print(fit, pars=c("company_freq", "weibull_c", "weibull_B")) 
traceplot(fit, pars=c("company_freq", "weibull_c","weibull_B"), inc_warmup = TRUE) 
 
r code sev model.R 
 
library(dplyr) 
library(distr) 
library(fitdistrplus) 
library(actuar) 
library(rstan) 
library(readr) 
#setwd 
setwd("C:/folder/") 
##import data 
data <- read_csv("sev data.csv",  
            col_types = cols(age = col_integer(),  
            incurred = col_double(), co = col_integer(), year = col_integer())) 
##make the data list 
attach(data) 
##age factor is for relativity of early alphas to ultimate (multiplicative) 
## must satisfy len(age_factor) = N_ages 
age_factor <- c(.5, .75, .9, .95,1,1,1,1,1,1, 1, 1, 1,1, 1, 1) 
##co priors are for the prior ultimate alpha for each company 
co_alpha_prior <- c(0.95,1.05) 
##universal beta param for all gamma distributions 
beta<- 40 
##implement 1M upper censoring on incurred 
incurred[incurred>1000000]<-1000000 
censored <- incurred==1000000 
data_list <- list(   
  incurred = incurred, 
  year = year, 
  age = age, 
  co = co, 
  N_claims = length(incurred), 
  N_years = 16, 
  N_ages = 16, 
  N_companies = 2, 
  threshold = 500000, 
  age_factor = age_factor, 
  co_alpha_prior = co_alpha_prior, 
  beta = beta, 
  censored = censored 
) 



##run stan 
fit<- stan(file = 'stan code sev model.stan', data=data_list, iter=2000, chains = 1, cores = 4) 
## plot output 
print(fit, pars=c("co_alpha")) 
traceplot(fit, pars=c("co_alpha"), inc_warmup = FALSE) 
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