\[\phi\] |
Normal |
\[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \mu_{i} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \mu_{i} \right) \cdot x_{i,j}}\] |
\[\phi \cdot \mu\] |
Poisson |
\[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot x_{i,j}}\] |
\[\phi \cdot \mu^{2}\] |
Gamma |
\[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \mu_{i}^{- 1} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \mu_{i}^{- 1} \right) \cdot x_{i,j}}\] |
\[\phi \cdot \mu^{3}\] |
Inverse Gaussian |
\[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \mu_{i}^{- 2} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \mu_{i}^{- 2} \right) \cdot x_{i,j}}\] |
\[\phi \cdot \mu^{p}\] |
Tweedie |
\[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \mu_{i}^{1 - p} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \mu_{i}^{1 - p} \right) \cdot x_{i,j}}\] |
\[\phi \cdot \left( \mu + \frac{1}{k} \cdot \mu^{2} \right)\] |
Negative Binomial |
\[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \frac{k}{k + \mu_{i}} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \frac{k}{k + \mu_{i}} \right) \cdot x_{i,j}}\] |
\[\phi \cdot \left( \mu + \frac{1}{k} \cdot \mu^{3} \right)\] |
Poisson-Inverse Gaussian |
\[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \frac{k}{k + \mu_{i}^{2}} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \frac{k}{k + \mu_{i}^{2}} \right) \cdot x_{i,j}}\] |
\[\phi \cdot exp\left( \frac{1}{k} \cdot \mu \right)\] |
??? |
\[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \mu_{i} \cdot e^{- \mu_{i}/k} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \mu_{i} \cdot e^{- \mu_{i}/k} \right) \cdot x_{i,j}}\] |