\[\mathbf{Var}\left( \mathbf{Y} \right)\] Related Distribution Estimating Equations (Log-Link)
\[\phi\] Normal \[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \mu_{i} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \mu_{i} \right) \cdot x_{i,j}}\]
\[\phi \cdot \mu\] Poisson \[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot x_{i,j}}\]
\[\phi \cdot \mu^{2}\] Gamma \[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \mu_{i}^{- 1} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \mu_{i}^{- 1} \right) \cdot x_{i,j}}\]
\[\phi \cdot \mu^{3}\] Inverse Gaussian \[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \mu_{i}^{- 2} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \mu_{i}^{- 2} \right) \cdot x_{i,j}}\]
\[\phi \cdot \mu^{p}\] Tweedie \[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \mu_{i}^{1 - p} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \mu_{i}^{1 - p} \right) \cdot x_{i,j}}\]
\[\phi \cdot \left( \mu + \frac{1}{k} \cdot \mu^{2} \right)\] Negative Binomial \[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \frac{k}{k + \mu_{i}} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \frac{k}{k + \mu_{i}} \right) \cdot x_{i,j}}\]
\[\phi \cdot \left( \mu + \frac{1}{k} \cdot \mu^{3} \right)\] Poisson-Inverse Gaussian \[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \frac{k}{k + \mu_{i}^{2}} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \frac{k}{k + \mu_{i}^{2}} \right) \cdot x_{i,j}}\]
\[\phi \cdot exp\left( \frac{1}{k} \cdot \mu \right)\] ??? \[\sum_{}^{}{{y_{i} \cdot w}_{i} \cdot \left( \mu_{i} \cdot e^{- \mu_{i}/k} \right) \cdot x_{i,j}} = \ \sum_{}^{}{{\mu_{i} \cdot w}_{i} \cdot \left( \mu_{i} \cdot e^{- \mu_{i}/k} \right) \cdot x_{i,j}}\]