
Ultimate Loss Reserve Forecasting using Bidirectional LSTMs

by

Lahiru H. Somaratne1

Supervised by Prof. Colin M. Ramsay

Abstract

This paper aims to demonstrate how deep learning (a subset of machine learn-

ing) can be used to forecast the ultimate losses of a sample group of Property and

Casualty insurance companies. The paper initially explores the concept of loss

development - how losses incurred by an insurance company mature across time.

These losses then reach a final amount, known as the ultimate loss. The paper also

looks at some already existing methods of forecasting the ultimate loss. The paper

then introduces a novel method of forecasting losses, one which involves the use of

deep learning neural networks. This new method uses Long Short Term Memory

(LSTM) - an advanced form of a deep learning architecture which specializes in

finding patterns in temporal data. The findings of this method are then compared

to a currently existing Python package which can also be used to predict ultimate

losses. The paper also goes to critique some shortcomings of the model that is

presented.

Key words and phrases: loss reserves, machine learning, deep learning, LSTM

1University of Nebraska-Lincoln, College of Business, Actuarial Science Program, Lincoln NE

68588-0490, USA. E-Mail: lahiru.somaratne@huskers.unl.edu

1



1 Introduction15

1.1 The life of a claim16

A claim is a policyholder’s request for financial indemnification from an insurance17

company after a loss causing event. When a claim is brought to the knowledge of18

the insurance company with whom the claimant has an insurance policy, the claim19

is said to have been reported. The time elapsed between the occurrence date of20

the event producing the claim and the date which the claim is reported is called21

the reporting delay (Amin et al., 2020). Once the claim has been reported to the22

insurer, a claim file is opened, and the claim development process begins where23

the insurer takes the necessary steps to process and settle the claim. Once the24

claim is settled, i.e. the claim is not expected to develop any further, the claim25

is then closed (Closed claims can be reopened if necessary). The time between26

the date the claim is reported and the date when the claim is closed is called the27

settlement delay (Amin et al., 2020). The settlement delay can be separated into28

time periods, called lag periods. At the end of each lag period, we can observe29

the state of the claim in terms of how much it has developed or changed over the30

previous lag periods. Due to the settlement delay that is inherent in any claim31

development process, the insurer at any time can have claims that are open and32

not fully developed. The state of development correlates with how far back in time33

the relevant claim was reported. The further back in time a claim was reported,34

the longer time it has had to develop, which can cause the oldest claims to be fully35

developed and closed.36

To better manage its open claims, insurers often aggregate claims by the acci-37

dent year (or the underwriting year), the development year, or the calendar year38

(or the accounting year) (Radtke, 2016, 242). The variables used to measure aggre-39

gate claims are cumulative paid losses, loss reserves, or incurred losses (Radtke,40

2016, 243). The cumulative paid losses for a particular claim at some time k rep-41

resents the total dollar amounts the insurer paid with regards to the claim up until42

time k. The loss reserves for a particular claim at some time k represents the in-43

surer’s estimate of the size of the unpaid claim remaining at time k. The incurred44

losses for a particular claim at some time k represents the insurer’s estimate of45

the size of the claim increment from time k-1 to time k. This paper focuses on46

loss development of cumulative paid losses because cumulative paid losses tend47

2



to be more stable in the loss development pattern. Specifically, cumulative losses48

almost always follow a monotonically increasing function over time, which makes49

predicting cumulative losses an easier task.50

1.2 Data Representation for Loss Reserving51

Data representation is an important aspect of loss reserving. Not only does it im-52

pact how the reader perceives data, the choice of how data is represented also53

impacts the choice of methods that can be used to develop loss data. The tradi-54

tional approach to representing loss reserving data is a loss development triangle55

where loss development data are grouped according to Accident Year (AY) and56

Development Year (DY). For example, suppose that we are looking at some hypo-57

thetical loss data across 6 accident years (2000-2005), over 6 development years. If58

we regard the x-axis as development years and y-axis as accident years, we arrive59

at this tabular format shown in Table 1:60

Table 1: Cumulative paid losses for accident years 2000–2005

over absolute development years 2000–2005

Accident

Year (AY)

Development Year (DY)

2000 2001 2002 2003 2004 2005

2000 100 120 150 160 188 192

2001 95 100 130 135 155

2002 111 106 110 130

2003 89 95 108

2004 109 115

2005 99

61

For AY 2004, the only observed losses are from development years 2004 and62

2005, because no data for AY 2004 exists for any time before 2004. Thus the ear-63

liest theoretical observation for any accident year exists on the leading diagonal,64

rendering any cells below this diagonal to be empty. A more efficient method of65

representing loss development data would be to change the development years66

from absolute to relative years. Development years defined in this manner refer to67

the nth year period after year of the accident. For example, DY 1 refers to the time68

period between 1 and 2 years after the accident took place. Rearranging Table 169

3



in this fashion would yield Table 2. This is an example of a run-off table (Schmidt,70

2016, 248).71

Table 2: Cumulative paid losses for accident years 2000–2005

over relative development years 0–5

Accident

Year (AY)

Development Year (DY)

0 1 2 3 4 5

2000 100 120 150 160 188 192

2001 95 100 130 135 155

2002 111 106 110 130

2003 89 95 108

2004 109 115

2005 99

72

The counter diagonal gives the latest observable data (cumulative paid loss),73

for each accident year. The unobserved cumulative paid losses can be found below74

the counter diagonal (this data is currently empty). The final relative development75

period for each accident year gives the ultimate losses. These losses are matured76

losses which can be regarded as having reached full development. The objective77

of this paper is to predict these ultimate paid cumulative losses.78

1.3 Loss Reserving Methods79

Although there are many methods for estimating property/casualty loss reserves,80

there are a few methods that are most commonly used. The most well known81

method is the chain ladder method and there are many variations of the chain82

ladder method. Briefly, under the chain ladder method, the ratio of cumulative in-83

curred losses (called the loss development factor) is calculated for successive loss84

development years. Assuming we have a loss development triangle with at least85

some fully developed loss data, the average loss development factors across the86

accident years are used to calculate cumulative claim development factors, which87

are then used to project ultimate loss. The loss reserve is the difference between88

the projected ultimate loss and the paid incurred loss. In general, loss reserv-89

ing methods can broadly be classified as being based on a parametric model or a90

non-parametric model. Traditionally, parametric models have been used due to91

4



ease of interpretation and calculation. Models such as the over-dispersed Pois-92

son, negative binomial, lognormal, and gamma models have been shown to be93

capable of replicating the chain ladder based reserving methods (England & Ver-94

rral, 11). These models are centered around estimating some parameters such95

as the means and the variances, either by accident year or loss development pe-96

riod, or both. Doing so condenses the number of parameters used by the model97

and helps in identifying the ‘ingredients’ that went towards estimating the losses.98

However, the assumptions needed in the process of constructing parametric mod-99

els can limit the predictive power of the model. Particularly in the case where the100

underlying factors which drive the dynamic relationships between data is not well101

understood, non-parametric models can outperform parametric models (Mills &102

Markellos, 2008, 224).103

A common feature of established loss reserving methods is their reliance on104

the existence of a sufficiently long loss run-off triangle. Ramsay (2007, 462) de-105

veloped a non-parametric loss reserving method/process to assist them with their106

“best guess” in the early years of development and with loss reserving in gen-107

eral. Ramsay’s method is fundamentally different from previous loss reserving108

methods. Given that losses are settled in n years, Ramsay’s method assumes the109

evolution of the incremental incurred loss over development years is the result of110

a random split of the ultimate loss for that accident year into n separate pieces of111

losses, which are then ordered from largest to smallest. The largest incremental112

loss is observed in the first development year, the second largest incremental loss113

is observed in the second development year, etc, so that the smallest incremen-114

tal loss is observed in the last development year. Ramsay’s approach requires no115

prior knowledge of the distribution of the ultimate loss or of the actual cumulative116

incurred loss. In addition, it uses little or no loss development data.117

Our Objective: To use deep learning to provide a loss reserving tool for actuar-118

ies to use loss development data to produce more efficient and accurate estimates119

of property and casualty loss reserves. Although we will use order statistics, our120

approach is different from Ramsay (2007).121

2 Machine Learning and Deep Learning122

In order to properly understand what deep learning is, we must briefly visit what123

machine learning is, since the former is a subset of the later. Central to the debate124

5



of what machine learning is, is the question, “Rather than programmers crafting125

data-processing rules by hand, could a computer automatically learn these rules126

by looking at data?”. A distinct advantage that machine learning has over classical127

statistics is the ability of machine learning models to handle data of a large volume,128

which can sometimes be a challenge to classical statistical methods (Chollet, 2018).129

Machine Learning can be broadly divided into three areas: supervised learning,130

unsupervised learning, and reinforcement learning. In supervised learning, data131

fed into a machine learning algorithm are divided into dependent and indepen-132

dent variables. It is called supervised learning because the dependent variables133

act as a guide, in helping identify the patterns that exist in the data. The unsuper-134

vised learning process has no dependent variable to measure the learning process135

against. Instead, the features of data are observed and similarities between data136

points are determined (Hastie et al., 2017). The last type of learning is reinforce-137

ment learning; the process of using a reward structure to make the algorithm learn138

the best course of action under a given set of circumstances (Sutton & Barto, 2018).139

Supervised learning can be further broken down into problems that involve re-140

gression or problems that involve classification, where the objective of regression141

problems is to predict some value such as a reserve forecast and the objective of142

classification problems is to identify if an outcome belongs to certain class, such143

as if a loss ratio will exceed a certain threshold. Since many problems that actu-144

aries deal with involve some level of financial prediction, most actuarial problems145

can be viewed as regression problems. Expressing actuarial problems as regres-146

sion problems makes them suitable to be solved using machine learning (Richman,147

2020, 230-258).148

Deep learning is a subset of machine learning which learns increasingly more149

meaningful representations of data in a more hierarchical fashion. You could look150

at other forms of machine learning as ‘shallow learning’, since they do not use as151

many hierarchical layers to learn about meaningful patterns in the data that they152

receive (Chollet, 2018). The key advantage of learning patterns in a hierarchical153

fashion is that at various levels of abstraction, various patterns can be discovered.154

It is easier to discover more granular patterns present in data this way. A typical155

implementation of a deep learning model is via a neural network, as shown in156

Figure 1. There are many different flavors of neural networks, each being unique in157

its own way. For the purpose of simple illustration of the concept, we will present158

a figure of a neural network, which utilizes a fully connected feed-forward neural159

6



network structure.160

161

Figure 1: Fully Connected Feedforward Neural Network162

In the example of a neural network given in Figure 1, each node receives input163

from all nodes of the previous layer. This network has an input layer I , that takes164

in 3 inputs, I ∈ R
3. Similarly, the output layer O, utilizes 1 node to output 1165

value, O ∈R1. Barring the input layer, each node of each layer implements a linear166

regression function. Figure 2 shows the workings of a node up close.167

7



168

Figure 2: Functioning of a node169

As mentioned before, each node (other than the input nodes) receives output from170

the preceding layer of nodes, as an input into it (Zhang et al., 2021). The inputs171

are each weighted differently. Therefore, we can represent the weighted inputs172

into the node as wiβi , where wi represents the ith weight, βi represents the ith173

input into the node, for i = 1,2, . . . ,n and n represents the ith input. These inputs174

also contain a bias term b. The data that is aggregated inside the node this way, is175

finally fed through an activation function to get the final output:176

node output = f

b+
n∑
i=1

wiβi

 (1)

where f (x) is an activation function for x ∈ R. A typical activation function used177

would be the “sigmoid” activation function 1:178

f (x) =
1

1 + e−x
(2)

where x ∈ R. As mentioned before, there are many flavors of neural networks179

and the type of network that will be the focus of this paper is a supervised neu-180

1This is also the inverse logit function.

8



ral network, where data is fed in the form of dependent variables (features) and181

independent variables (labels).182

183

Figure 3: The general structure of a dataset of with n features and m rows184

Features are fed into the input layer and passed forward through the network,185

where at the end of the network (the output layer), predictions are made. These186

predictions are then evaluated by a loss function, which aims to calculate the error187

of the predictions. Typically, the mean squared error function is used (Alzubaidi188

et al., 2021, 20):189

L(ŷ, y) =
1

2N

N∑
i=0

(ŷ − y) (3)

where ŷ is the predicted output and y is the actual output. Optimizing the loss190

function means that the predicted output of the neural network needs to be as191

close as possible to the actual output of the data set. This process of optimizing192

is called training the network. As mentioned earlier, each neuron of each layer193

of the neural network has its own respective weights that regulate the strength194

of incoming signals from the preceding layers and biases. Therefore, we need195

to change these weights and biases through a process known as backpropagation,196

where all of the network’s weights and biases are optimized, with respect to a given197

loss function (Zhang et al., 2021). The goal here is to minimize the given loss and198

in turn find the weight and bias settings that enable this said minimization:199

w′,β′ = argmin
w,β

L(ŷ, y) (4)

where w′ and β′ are network optimized weights and biases. Through backprop-200

agation and using the multidimensional gradient descent method, we are able to201

iteratively adjust the weights and biases of the network, taking into consideration202

9



the sensitivity of each weight and bias, in relation to the loss function. The goal203

is to optimize weights in proportion to the impact that their change has on mini-204

mizing the loss . We can represent the optimization task on a given weight as the205

following partial derivative:206

∆ (k)wij = −η ∂L

∂ (k)wij
(5)

where ∆ (k)wij represents the change in given weight, k represents the layer which207

the weight belongs to, i is the destination node (the node which receives the weight),208

j is the origin node (the node which outputs the weight), and η is the learning rate209

(a tunable hyperparameter of the model). Thus the newly optimized weight can210

be represented as:211

(k)w′ij = (k)wij +∆ (k)wij (6)

212

Figure 4: A demonstration of a weight213

We can represent the optimization process to include all weights and biases as:214

∆W =
(
∆ (1)w,∆ (2)w, . . . ,∆ (p)w

)
(7)

10



where ∆W is a (m×n×p) 3D matrix composed of individual matrices containing the

changes in weights and biases, for each layer of the network, and, for r = 1,2, . . . ,p,

∆ (r)w =


∆ (r)w11 ∆ (r)w12 · · · ∆ (r)w1n

∆ (r)w21 ∆ (r)w22 · · · ∆ (r)w2n
...

... · · · ...

∆ (r)wm1 ∆ (r)wm2 · · · ∆ (r)wmn


(8)

and p represents the maximum number of layers in the network. For simplicity,215

we assume that the number of nodes for each layer is fixed, and therefore the216

maximum number of origin nodes and maximum number of destination nodes217

are the same for any particular layer. Therefore at each iteration, a new 3D matrix218

W′ is created:219

W′ = W+∆W (9)

where220

W =
(

1 w,2 w, . . . ,p w
)

(10)

W′ =
(

1 w′,2 w′, . . . ,p w′
)

(11)

and, for r = 1,2, . . . ,p,

(r)w =


(r)w11

(r)w12 · · · (r)w1n
(r)w21

(r)w22 · · · (r)w2n
...

... · · · ...
(r)wm1

(r)wm2 · · · (r)wmn


(12)

(r)w′ =


(r)w′11

(r)w′12 · · · (r)w′1n
(r)w′21

(r)w′22 · · · (r)w′2n
...

... · · · ...
(r)w′m1

(r)w′m2 · · · (r)w′mn


(13)

where W and W′ represent the 3D matrix of optimized weights and biases from221

the last iteration of the network optimization, and the 3D matrix of the newly222

optimized weights and biases, respectively. The weights and biases are adjusted,223

until the weights of the ∆W matrix cause the training loss to begin increasing,224

instead of decreasing. This can be represented as shown in Figure 5:225

11



226

Figure 5: Neural network training process227

3 Recurrent Neural Networks (RNNs)228

As is evident by the introduction, loss development has a strong temporal compo-229

nent. Therefore, any deep learning model that is used to make loss development230

predictions needs to take this aspect of the data into account. For this reason,231

recurrent neural networks are a worthy choice to consider. The basic premise of232

these types of networks is the reliance of a past sequence of data to make a pre-233

diction. This can be represented as follows (Zhang et al., 2021): the conditional234

probability of observing x at time t (i.e., xt), given previous observations at times 1,235

2, . . . , t − 1 can be written as Pr(xt |xt−1,xt−2, . . . ,x1). As it is generally prohibitively236

costly to store all information of a given sequence in memory, we therefore can237

retain the partial information given a certain subset of this sequence. This partial238

information subset can be identified as the hidden state, ht−1. This leads to the239

conditional probability given the partial information as Pr(xt |ht−1). The hidden240

state itself can be represented recursively as:241

ht−1 = f (xt−1|ht−2) (14)

12



where xt−1 is the observation at time t −1 and ht−2 is the hidden state at time t −2.242

In comparison to the node described before, a node of a RNN can be “unrolled”243

in time due to it having this hidden state. An intuitive illustration of how an244

RNN processes sequential data by remembering input from previous timesteps is245

depicted in Figure 6:246

247

Figure 6: How an RNN processes sequential data248

As Figure 6 illustrates with the sentence “Quick brown fox jumps over the lazy249

dog,” at each time step, information from previous timesteps is used to predict250

the output at that time step. Note that the hidden state can only contain a finite251

amount of information and therefore tends to hold past information only within252

a certain time frame. Mathematically speaking, the introduction of hidden states253

now implies that there are more weights and biases to optimize. If we visualize254

the weights as matrices - for feedforward neural networks, we only have matrices255

with weights relating to the current time, t. With a hidden state, each weight will256

now have a hidden state version of it.257

We can represent the flow of data of RNN in matrix notation in the following258

manner:259

Ht = α(XtW+Ht−1Wh) (15)

where Ht is the output vector of the hidden layer at time t, Xt is the input vector at260

13



time t, Ht−1 is the output vector of the hidden layer from time step t − 1 (also the261

hidden state at time t), W is the weight matrix, of which the first layer is multiplied262

by Xt. Wh is the weight matrix of the hidden layers, of which the first layer is263

multiplied by Ht−1, which is the same matrix discussed in Section 5, and α is the264

symbol of the activation function used in the respective layer. As W and Wh are265

composed of matrices Wr and Wr
h, respectively, where r refers to a layer of the266

neural network and p is the maximum number of hidden layers in the network),267

equation 15 can also be written as:268

Ht = α
(((

XtW
0
)
· · ·

)
Wp +

((
Ht−1W

0
h

)
· · ·

)
Wp

h

)
(16)

where Xt ∈ Rd , Ht−1 ∈ Rd , and the following d × d matrices: W = {Wij} and Wh =269

{Wh:ij} for i, j ∈ {1,2, . . . ,d}.270

271

Figure 7: Weights of a feedforward network, without recurrent connections272

14



273

274

Figure 8: Weights of a feedforward network, with recurrent connections275

4 Long Short TermMemory Cell (LSTM)276

A recent innovation in RNN has been Long Short Term Memory (LSTM). The fun-277

damental reason for LSTM preference in sequence prediction is the ability of LSTM278

cells to learn relevant information in long input sequences (Sherstinsky, 2020, 1).279

15



280

281

Figure 9: How LSTM handles short and long term dependencies282

As a LSTM cell is fed with a sequence of data, it continuously changes its state and283

in doing so, it changes its long-term and short-term memory. Figure 9 shows more284

of the anatomy of a LSTM cell. The main idea behind an LSTM cell is its ability285

to overcome the ‘short term’ memory issues of the plain RNN architecture. How it286

accomplishes this is by having two dedicated parts in its memory, one for short and287

one long term pattern identification. ‘Cell state’ refers to the long term memory288

and the ‘Hidden state’ refers to the short term memory. As seen in Figure 9, there is289

a sinusoidal wave, which has a sudden amplitude change at every 1000 time steps.290

With plain RNNs, the sine wave that repeats every time step will be learned well291

but the sudden change at the longer time interval will be missed. LSTMs however292

do not suffer from this fate.293

16



294

Figure 10: How bidirectional LSTMs get data295

As shown in Figure 10, bidirectional LSTMs consume data in both directions. This296

helps to establish context better because not only previous timestamps are used,297

but also data from future time stamps can also be used to predict outcomes. As298

shown with the dummy sentence, “Quick brown fox jumps over the lazy dog,” the299

prediction uses data fed in both directions: backwards and forwards (Basaldella300

et al., 2018, 182-183). It is important to note that bidirectional data feeding only301

happens during training. During inference, we do not know what the future se-302

quences are for certain.303

5 Main Research Idea304

5.1 The Crux of the problem305

Let us consider a set of independent companies labeled {0,1, . . . , b}. Each com-306

pany provides cumulative loss development (CLD) data, with consecutive accident307

years (AYs) labeled {0,1, . . . ,m} and development years (DYs) labeled {0,1, . . . ,n} and308

17



m ≥ n where m is the current year. Let Ckij denote the cumulative paid losses for309

kth company, originating in the ith accident year and at the jth development year,310

where i ∈ {0,1, . . . ,m}, j ∈ {0,1, . . . ,n}, and k ∈ {0,1, . . . , b}.311

Table 3: Cumulative paid losses of company k

Accident

Year

(AY)

Development Year (DY)

0 ... g ... n

0 Ck,0,0 ... Ck,0,g ... Ck,0,n

1 Ck,1,0 ... Ck,1,g ... Ck,1,n

... ... ... ... ... ...

h Ck,h,0 ... Ck,h,g ... Ck,h,n

... ... ... ... ... ...

m Ck,m,0 ... Ck,m,g ... Ck,m,n

312

Consider Table 3 which shows the cumulative paid losses of a P&C company.313

For the purposes of generalizing this table over a number of the companies of the314

same line of business, let’s consider the kth company. Claims for each accident year315

develops over n development years (also called lags). After the nth lag period from316

the accident year, we assume that claims from that respective accident year are317

considered closed, i.e: the claims have matured and reached the ultimate losses318

so that no more claims can arise from accidents that took place in this specific ac-319

cident year (Radtke, 2016). We consider the most recent accident year which we320

have data as the mth accident year. This implies that for the mth accident year, we321

only have claims information for a single lag period, i.e. losses have only had one322

time period to develop. Therefore for any accident year, h (h < m), it is easy to323

see that we have n− h unobserved loss developments periods. This means that for324

the hth accident year, the last observable cumulative paid loss is Ck,h,n−h (Schmidt,325

2016). If m = n, this gives us a cumulative paid loss development run-off triangle,326

for the kth company, as shown in Table 4 below. Note that Table 4 shows a loss tri-327

angle that an insurance company typically faces. As can be seen, certain accident328

years have unobserved cumulative paid losses and the first unobserved cumulative329

paid loss occurs at Ck,h,n−h+1.330

18



Table 4: A sample loss triangle - cumulative paid losses of company k

Accident

Year (AY)

Development Year (DY)

0 1 ... g ... n

0 Ck,0,0 Ck,0,1 ... Ck,0,g ... Ck,0,n

1 Ck,1,0 Ck,1,1 ... Ck,1,g ...

... ... ... ... ...

h Ck,h,0 Ck,h,1 ... Ck,h,g

... ... ... ...

m Ck,m,0

331

Note that for h = 0, there are no unobserved cumulative paid losses as this is the332

oldest accident year on record and that since we expect the oldest accident year to333

be fully matured in terms of loss development, we already know the ultimate loss334

for the accident year h = 0. Conversely, g = 0 (i.e. the first lag period for any given335

accident year) would always be observable as each lag period data is assumed to be336

as of the end of that lag period. By estimating these unobserved cumulative paid337

losses, our final objective is to estimate the final cumulative paid loss for company338

k, i.e.:339

Final Cumulative Paid Loss = Ck,h,n (17)

where h ∈ {0,1, . . . ,m}. Table 5 demonstrates cumulative paid losses, including the340

ultimate paid losses that need to be estimated. Therefore, for the hth accident341

year, the cumulative paid losses which need to be estimated before estimating the342

ultimate paid loss can be represented as shown in Table 5, where t ∈ {n−h+1, . . . ,n−343

1}.344

19



Table 5: The incomplete portion of the loss triangle in Table 4

Cumulative paid losses of company k

Accident

Year (AY)

Development Year (DY)

0 1 ... g ... n

0 ...

1 Ck,1,n

... ... ...

h ... Ck,h,n

... ... ... ... ...

m Ck,m,1 ... Ck,m,g ... Ck,m,n

345

5.2 Interdependencies in the Data346

Besides the primary assumption of loss development being limited to n loss devel-347

opment periods, the secondary assumption that we make with regards to our data348

is that all run-off triangles are sourced from a common loss development environ-349

ment. In other words, each run-off triangle is from a company that belongs to one350

particular line of business. For instance, medical malpractice, commercial auto ,351

or workers’ compensation. This secondary assumption enables us to combine and352

analyze loss development patterns in a more cohesive manner, leveraging certain353

techniques of machine learning to increase our sample size, rather than just look-354

ing at a single run-off table for a given company when making estimates. We can355

simultaneously look at run-off tables of several companies and jointly predict the356

loss development of these companies. We can further analyze this idea as follows.357

For a given company k, we have the following loss development run-off triangle al-358

ready given in Table 4. For a given accident year h, Ck,h,g−1 ≤ Ck,h,g for g ∈ {1, . . . ,n}.359

This implies the existence of a latent function, ξ(·), such that360

Ck,h,g = ξ(Ck,h,g−1) (18)

Therefore, we can hypothesize that there is a latent function which takes a given361

cumulative paid loss of a given company at a certain accident year, to produce the362

cumulative paid loss of the next lag period, for the same company at the same363

accident year.364

Due to our secondary assumption, we can assume that there exists some distri-365

20



bution that can model the loss development of an hth accident year, AYh . The hth
366

accident year of any company therefore, can be assumed to be from the AYh distri-367

bution. This assumption is plausible because we assume that since the companies368

that we are examining are from the same line of business, their loss experience is369

from a shared business/economic/regulatory environment. Thus, the loss devel-370

opment of each company, at a given accident year should be comparable to other371

companies.372

If we take an order statistics approach, then AYh distribution’s gth order statis-373

tic, which we denote as AY(h)
g , can give us the Ck,h,g for a given company k. We have374

to adjust AYh such that idiosyncrasies of loss development of individual compa-375

nies are not ignored. Therefore, the distribution of interest is AY(h|k) , i.e. loss376

development of the hth accident year, for a given company k. The inverse run-off377

triangle for AY(h|k) is shown by Table 6:378

Table 6: Inverse run-off triangle for AY(h|k)

Accident

Year (AY)

Development Year (DY)

0 1 ... g ... n

0

1 AY(1|k)
n

... ... ...

h ... AY(h|k)
n

.... ... ... ... ...

m AY(m|k)
1 .... AY(m|k)

g . . . AY(m|k)
n

379

Thus in order to predict the ultimate losses for each company, we would need380

to know AY(h)
n for h ∈ {0,1, . . . ,m} and n is the last lag period, for each company.381

However, we are no longer restricted to looking at only company specific data382

when modeling the loss development of a particular company. Let Rk,h,g denote383

the ratio of the adjacent cumulative paid losses in columns g and g − 1, i.e.,384

Rk,h,g =
Ck,h,g

Ck,h,g−1
(19)

where g = 1,2, . . . ,n − 1 and h is the accident year. Transforming the data in this385

manner helps approximately normalize data in a manner which is frequently used386

21



by actuaries. In addition, the ratios also tend to fluctuate within a smaller range387

than non-normalized loss numbers, as shown in Table 7.388

Table 7: Inverse run-off triangle using loss development ratios

Accident

Year (AY)

Development Lag (DY)

0 1 . . . g . . . n-j . . . n-1

0

1 Rk,1,n−1

. . . . . . . . . . . .

h Rk,h,n−j . . . Rk,h,n−1

. . . . . . . . . . . . . . .

m Rk,m,1 . . . Rk,m,g . . . Rk,m,n−j . . . Rk,m,n−1

389

6 Modeling the data390

The composite model built in this paper needs the input data to adhere to some391

important assumptions:392

1. As per the case with this data set, we assume that no more losses are incurred393

after 10 years (Meyers & Shi).394

2. The loss development pattern of each accident year should be relatively com-395

parable, i.e. the loss development pattern of each accident year should con-396

tain similar levels of noise. If each accident year’s loss development has in-397

comparable noise levels, predictions lose reliability (Giles et al., 2001).398

The model of choice for this paper is a composite model which is made of 8399

sub-models, making 8 sequence predictions in total. The predictions are recursive400

in nature with each prediction building on the preceding predictions. Because the401

loss triangle is an inverted right angle triangle, in order to build a complete square402

out of the triangle, we need to progressively increase the length of the prediction403

sequence. We start with the predictions for the first accident year, i.e. the topmost404

row of the loss triangle. There is nothing to predict in this row. However, we405

can feed all lag periods barring the last, as a single sequence. This can act as406

our independent variable. The last lag period can be input into the model as the407

dependent variable. For both independent and dependent sequences, each stripe408

22



of a sequence represents data relates to a single company. For instance, the loss409

sequence of Company 001 is represented together by the topmost rectangle on the410

left and the topmost square on the right, in the ‘Training’ portion of Figure 11.411

It must be noted that this model building process does not aim to complete the412

loss triangles by completing the diagonals. Instead we build out each row, from413

the rows with the most complete sequences (mature data), to those with the least414

complete sequences (newer data).415

416

Figure 11: Feeding data into a sub-model 1417

We can then use the second accident year’s loss sequence, from the first to the418

penultimate lag as the ‘test’ independent variable. The ‘Prediction’ portion of Fig-419

ure 11 shows this. Since we want to predict the last lag period’s loss development420

of the second accident year (this will be our first ‘true’ prediction), we will train421

our model with the loss sequence from the previous accident year and use that to422

predict the succeeding accident year’s loss development. For any given company,423

using the structure shown in Figure 11, we can arrive at a partially completed loss424

rectangle as shown in Figure 12.425

23



426

427

Figure 12: Partially completed loss square, after the predictions made using428

sub-model 1429

After the first sub-model has been made, we use all our previously completed430

sequence data to make the new dependent and independent loss sequences. We431

look to see the length of the sequence that we have to predict and then we treat432

our previous accident years’ data as input. Each accident year is treated as a sam-433

ple. Figure 13 demonstrates this. In the second sub-model, we have to predict a434

dependent sequence that is 2 periods in length and we use the first two accident435

years of data. For any given company, using the structure shown in Figure 13, we436

can arrive at a partially completed loss square as shown in Figure 14. Note that437

the prediction shown in Figure 13 uses predictions made by process shown in the438

Figure 11.439

24



440

Figure 13: Feeding data into a sub-model 2441

442

25



443

Figure 14: Partially completed loss square, after the predictions made using444

sub-model 2445

We can generalize the process of building sub-models based on other sub-446

models, as highlighted in the building of the first sub-model followed by the sec-447

ond sub-model. This can be referred to as ‘Cascading’ (Harej et al., 2017). This is448

illustrated in Figure 15. With reference to Figure 15, the bigger stacked triangles449

represent the loss triangles of each company in the data set. The first sub-model450

predicts the ultimate losses of the second accident year of the data set.451

452

26



453

Figure 15: General process of cascading454

6.1 The Training Data455

To successfully implement our deep learning approach, we need so-called train-456

ing data. This is further explained in Section 2. The training data can be split457

into two parts: The first part is the independent training sequence while the sec-458

ond part deals with the dependent training variable. To implement the first part,459

27



let SITRM
r denote independent training matrix (ITRM), SDTRM

r denote dependent460

training matrix (DTRM), SITSM
r independent test matrix (ITRM), SPOM

r denote pre-461

dicted output matrix (POM) , for sub-model r, for r = 1,2, . . . ,8. For Rk,h,g defined462

in equation (19) with k = 0,1, . . . , b, h = 0,1, . . . ,m, and g = 0,1, . . . ,n, SITRM
1 looks at463

the most mature (or oldest) losses and is given by:464

SITRM
1 =


R0,0,0 · · · R0,0,n−1

...
...

...

Rb,0,0 · · · Rb,0,n−1

 (20)

The second part of the training data is the dependent training matrix (DTRM),465

SDTRM
1 , given by466

SDTRM
1 =


R0,0,n

...

Rb,0,n

 (21)

The matrix described in 20 represents the oldest losses (losses at accident year467

0), from the lag periods 0 through n − 1 (n − 1 = 8 in this case), for each company468

present in the dataset. The matrix shown in 21 contains the final loss ratio. To-469

gether these 2 matrices - SITRM
1 and SDTRM

1 , form an independent and dependent470

relationship. This relationship is what is detected by the deep learning algorithm.471

Once the first sub-model is trained with the above data, we can get the first pre-472

diction. We predict with test data. Test data can also be broken into two parts as473

before; independent and dependent. The independent test data can be shown as:474

SITSM
1 =


R0,1,0 · · · R0,1,n−1

...
...

...

Rb,1,0 · · · Rb,1,n−1

 (22)

The dependent test data or the predicted ultimate loss ratios, are given by the475

predicted output matrix (POM), SPOM
1 where476

SPOM
1 =


R0,1,n

...

Rb,1,n

 (23)

With the test data, in a similar fashion to the training data, we can divide the477

data into independent and dependent data. In this case, we seek to predict the final478

28



loss ratio, for each company in the dataset. Since the Deep Learning algorithm has479

already been fed with training data, both dependent and independent data - we480

only need to provide the algorithm independent testing data. With the patterns481

extracted from the training data using the oldest losses, the sub-model 1 is able to482

predict the ultimate loss ratio using the loss sequence of the second oldest accident483

year. Note that the independent data for both training and test data are of the same484

length, over identical lag periods. The only difference is that with test data, we do485

not know the dependent value (this is also the first lag which we do not know of,486

as the second oldest accident year takes one more lag period to fully mature), and487

therefore this is the matrix we will predict.488

The second sub-model therefore processes the two oldest accident years - the489

two topmost rows of the loss triangle. The second row contains predictions from490

the previous sub-model. The two rows are split into training data, testing data,491

and predicted data. The second sub-model can be written as:492

SITRM
2 =




R0,0,0 · · · R0,0,n−2

...
...

...

Rb,0,0 · · · Rb,0,n−2


R0,1,0 · · · R0,1,n−2

...
...

...

Rb,1,0 · · · Rb,1,n−2




(24)

SITRM
2 is the independent training data matrix. The second part of the training493

data is the dependent training matrix, SDTRM
2 , given by494

SDTRM
2 =




R0,0,n−1

...

Rb,0,n−1

R0,0,n
...

Rb,0,n


R0,1,n−1

...

Rb,1,n−1

R0,1,n
...

Rb,1,n




(25)

Once the second sub-model is trained with the above data, we can get the sec-495

ond prediction. Note that in the second sub-model, our goal is to predict the last496

two lag ratios of the third accident year or third row, for each company. Therefore,497

our dependent matrix of our training data is two lag periods wide, since we need498

29



to train to predict the last two lag periods. This means that the matrix of our inde-499

pendent training data can only be n− 2 (n− 2 = 7 in our case) elements wide. Test500

data can also be broken into two parts as before; independent and dependent. The501

independent test data can be shown as:502

SITSM
2 =


R0,2,0 · · · R0,2,n−2

...
...

...

Rb,2,0 · · · Rb,2,n−2

 (26)

Note that the SITRM
2 is identical to SITSM

2 in width, whilst SDTRM
2 is identical to503

SPOM
2 in width. This is done for the same reasons as in the sub-model 1 training504

- the algorithm knows the nature and dimensions of the independent and depen-505

dent relationships of the data for the third accident year. The dependent test data506

or the predicted ultimate loss ratios can be shown as:507

SPOM
2 =


R0,2,n−1

...

Rb,2,n−1

R0,2,n
...

Rb,2,n

 (27)

Following this pattern, the last sub-model, which predicts the ultimates of the508

last accident year is given as follows:509

SITRM
8 =




R0,0,0

...

Rb,0,0


...

R0,m−1,0
...

Rb,m−1,0




, (28)

the independent training variable is:510

30



SDTRM
8 =




R0,0,1 · · · R0,0,n

...
...

...

Rb,0,1 · · · Rb,0,n


...

R0,m−1,1 · · · R0,m−1,n
...

...
...

Rb,m−1,1 · · · Rb,m−1,n




, (29)

the dependent testing data matrix is:511

SDTRM
8 =


R0,m,0

...

Rb,m,0

 (30)

and the predicted output matrix is:512

SPOM
8 =


R0,m,1 · · · R0,m,n

...
...

...

Rb,m,1 · · · Rb,m,n

 . (31)

Once all sub-models have made their predictions, the loss development trian-513

gle for each company can be completed and the loss reserves can be estimated.514

6.2 Role of Embedding515

The process highlighted in Section 6.1 is a demonstration of how cascading works516

with sub-models in order to create a comprehensive overall model. However, cas-517

cading by itself does not help to create an overall modeling process that can predict518

the loss development of multiple companies at once. As highlighted in Section 6.1,519

when we input data into the sub-models, we do recognize that the data comes from520

multiple companies. However, this alone is not enough to ensure that the neural521

network is aware that it is dealing with parallel sequences of losses from different522

companies. For that, we need to ensure that we use embedding on each paral-523

lel sequence that we input. Embedding is a means to replace original categorical524

identification data such as categorical names, with vectors (Google, 2021). These525

vectors are deep learning friendly. This process is shown in Figure 16.526

31



527

528

Figure 16: Process of Embedding529

Embedding is done by first creating a lookup dictionary as shown. Initially, each530

category is regarded as a key and a subsequent random vector is made for that531

key in the dictionary. This random vector then replaces each original entry of532

the categorical name in the data set. By replacing each categorical name with a533

vector, the substituting vector can be treated like any other variable of the deep534

learning model. This enables the deep learning algorithm to create a matrix of535

vectors of length j, where j is the total number of categories in the data, and a536

width of w, where w is the length of each row, i.e., length of vector representing537

each embedded category.538

7 Sub-Model Architectures539

Each sub-model has identical architectures, with the difference being in the size540

of the input sequences, length of company codes list, the number of bidirectional541

layers, dense layers, and the width of the output layer. In building a cascading542

model, the biggest challenge was to build sub-models that progressively increased543

in the number of parameters in such a way that the respective sub-models did544

not overfit the data. Hence the reason why the number of bidirectional layers and545

32



dense layers gradually increase with the amount of input data. Table 8 gives a546

brief technical description of the deep learning components used in making each547

sub-model.548

Table 8: Summary of the major architectural decisions of each sub-model

Submodel Component Description

Bidirectional LSTM Layer Activation used = Softplus,

Recurrent Dropout used.

Dense Layer (Non-output) Activation used = SELU, Activ-

ity Regularizer l1 and l2 used.

Dense Layer (Output) No activation or Activity Reg-

ularization used

Optimizer Nadam with MAPE as the loss

function

Call Backs Early Stopping at 50 epochs

549

Softplus is not as widely used as some other activation functions such as the Rec-550

tified Exponential Linear Unit (RELU). However, on this data set, Softplus tends551

to perform better than some of the other activation functions, for optimizing us-552

ing LSTM cells. In terms of the anatomy, Softplus is very similar to RELU with the553

minor difference of being smoother close to the Input = 0 region. Figure 17 shows554

these functions. The Scaled Exponential Linear Unit (SELU) activation function is555

used in the dense layers, with the exception of the output layer. The SELU activa-556

tion function, much like the Softplus activation, was used due to its performance557

on the data set. The formulas for each activation function is as follows (Nwankpa558

et al., 2018):559

RELU : f (x) =

0 if x < 0

x if x ≥ 0,
(32)

Softplus : f (x) = log10 (ex + 1) x ∈R (33)

and560

SELU : f (x) =

1.05070098x if x < 0

1.05070098× 1.67326324(ex − 1) if x ≥ 0
(34)

33



561

Figure 17: Activation functions used: Softplus (Blue), SELU (Red), RELU (Green)562

Since sequence processing involves repeatedly taking derivatives of activation563

functions, saturation regions in activation functions can lead to vanishing or ex-564

ploding gradients (Pascanu et al., 2012). The derivatives of Figure 18 show that565

for values of input (horizontal axis) close to 0 - for any neuron cell, saturation does566

not occur in Softplus. Perhaps the smooth gradient around 0 in the derivative of567

Softplus may assist in detecting patterns specific to this data set, hence explain-568

ing its better performance. However, further research is needed to confirm this.569

One similarity between the derivatives of Softplus and SELU is that they do not570

immediately saturate in the periphery of 0. This could be a potential reason for571

their good performance on this data set.572

573

Figure 18: Derivatives of activation functions used: Softplus (Blue), SELU (Red),574

RELU (Green)575

The loss function of choice for sequence prediction is mean absolute percentage576

34



error (MAPE). This loss function is preferred as the percentage deviation is an eq-577

uitable measure of deviation, regardless of the normalization used in the sequence578

(de Myttenaere et al., 2015). In our case, as the data used is ratio data, using the579

more commonly used mean squared error (MSE) loss function will produce very580

small errors which may be trickier to optimize. The MAPE loss function is given581

by:582

MAPE loss function = argmin
ŷ

100
n

n∑
i=0

(
ŷi − yi
yi

) (35)

where y = (y0, y1, . . . , yn) is the vector of observed or actual values and ŷ = (ŷ0, ŷ1, . . . , ŷn)583

is the vector of predicted or estimated values.584

8 Observations - Loss Development Factors and Acci-585

dent Year/Development Year Interactions586

As already established, this model uses loss development factors and consumes587

data by accident year - to complete each row of the loss triangles of the respective588

companies. Even so, the business of extracting loss patterns is an endeavor fraught589

with many dangers. In this section, we aim to consider some of these dangers590

and also seek to establish the scope of the remedies that we have applied in our591

approach to minimize these dangers. Loss development patterns can change due592

to a myriad of reason (Clark et al., 2021):593

• Change in the business mix of an insurance company, particularly but not594

limited to the frequency and severity of claims.595

• Changes in the procedures followed - for instance the process of establishing596

a case reserve.597

• Commutations where the re-insurer transfers its current and future liability598

from particular ceded contracts back to the original insurer, along with an599

agreed upon payment. This is a known phenomena impacting losses from600

the Schedule P loss triangle - our data source.601

• Missing or incomplete data.602

• Changes in law and tort reform603

35



• Social inflation causing increases in pay outs.604

Data along diagonals, particularly from the later accident years when losses605

have yet to mature, can become significantly distorted by the above highlighted606

phenomena. Our model does not aim to tackle any of the above phenomena. Our607

focus is to merely demonstrate a methodology that can detect and extract loss608

development patterns. Whilst it is essential that the sources of loss pattern distor-609

tions be identified, we feel that doing so in this paper would be a distraction to the610

fundamental aim of the paper.611

De-trending is another important aspect of pre-processing loss development612

sequences. Whilst knowing the sources of loss distortions can be of immense help,613

we do not necessarily require this knowledge to de-trend a loss sequence. In our614

modeling approach, since we consider the loss patterns of all respective compa-615

nies when making a prediction on any one company’s loss pattern, we partially616

immunize the model from being too overly sensitive to any idiosyncratic loss trend617

present in only one company. By considering loss development on a row by row618

basis, we also seek to partially immunize the model from fluctuations present at619

the diagonal of each loss triangle. Hence our approach to de-trending is embed-620

ded in our choice of setting up the model, and also on the inherent virtues of deep621

learning via recurrent neural networks.622

9 The Main Results623

Table 9 shows the average deviation of the ultimate loss predictions for each ac-624

cident year, across all companies, under each method. Deep Learning (DL) is the625

method implemented in this paper. Chain Ladder is a Python package implemen-626

tation of loss reserving that is already available for use (Chain Ladder - Reserving627

in Python, 2021). The Chain Ladder Python package has a vast array of function-628

alities beyond calculating ultimate losses, but for the purposes of this paper, we629

use it to only calculate ultimate losses.630

Table 9: Average deviation of predictions in percentages631

Notes: CL refers to Chain Ladder and DL refers to Deep Learning632

36



AY 2 AY 3 AY 4 AY 5 AY 6 AY 7 AY 8 AY 9 AY 10

DL 0.00 1.03 3.60 7.46 6.51 9.00 13.77 25.40 30.86

CL 1.07 1.10 3.49 3.66 7.82 11.20 16.97 26.08 61.55

One important fact to highlight is that under the Chain Ladder package, there633

is no need to calculate the loss development factors first. Therefore the loss tri-634

angle can start developing from the first accident year. However, under the DL635

method, since we are working with loss development factors, we have to consume636

the first two accident years to develop the first ratio, the second two accident years637

to develop the second ratio and soon. Therefore, in order to create loss data which638

contain an equal number of lag periods and accident years, we need to omit the639

first accident year. This is the reason for the AY2 having a prediction of deviation640

of 0 under the DL method; there is no prediction to be made for AY2.641

The prediction deviation is calculated as:642

Prediction deviation =
100
n

n∑
i=0

∣∣∣∣∣ ŷi − yiyi

∣∣∣∣∣ (36)

An example of how the performance deviation is calculated under the Deep643

Learning (DL) method can be illustrated as follows. Supposing we are interested644

in the deviation of the 9th lag period of accident year 3 prediction (which is also645

the Ultimate Loss of AY3).646

Table 10: Sample cumulative paid loss development ratios, {s0, . . . , s8}

Actual loss square of a single company - Cum. Paid LDF

0 1 2 3 4 5 6 7 8

...

AY 3 3.665 2.220 1.530 1.040 1.020 1.010 1.000 0.980 1.000

...

647

37



Table 11: Sample predicted cumulative paid loss development ratios, {ŝ0, . . . , ŝ8}

Predicted loss square of a single company - Cum. Paid LDF

0 1 2 3 4 5 6 7 8

...

AY 3 3.665 2.220 1.530 1.040 1.020 1.010 1.000 0.980 1.030

...

648

The Tables 10 and 11 show a pair of sample tables, actual and predicted cu-649

mulative paid loss development ratio values respectively; for a sample company.650

These tables will be used to demonstrate how to calculate performance deviation651

under the Deep Learning method. The calculations are shown below. Suppose652

{s1, . . . , si , . . .} is a sequence of observed or actual values and {ŝ1, . . . , ŝi , . . .} is a se-653

quence of predicted or estimated values and j represents the lag period of evalua-654

tion. Then the performance deviation at the jth lag is:655

Performance Deviation at Lag j =

∣∣∣∣∣∣∣
∏j

i=0 ŝi −
∏j

i=0 si∏j
i=0 si

∣∣∣∣∣∣∣ (37)

so that the AY3 prediction deviation (at j = 8) becomes656

AY3 Prediction Deviation =

∣∣∣∣∣∣
∏8

i=0 ŝi −
∏8

i=0 si∏8
i=0 si

∣∣∣∣∣∣ (38)

Note that for AY3, Table 10 gives
∏8

i=0 si = 3.665 × 2.220 · · · × 1.00 = 13.0707. On657

the other hand, for AY3, Table 11 gives
∏8

i=0 ŝi = 3.665× 2.220 · · · × 1.03 = 13.4628658

The Tables 12 and 13 show a pair of sample tables, actual and predicted cu-659

mulative paid loss values respectively, for a sample company. These tables will660

be used to demonstrate how to calculate performance deviation under the Chain661

Ladder method. The calculations are shown below.662

Table 12: Sample cumulative losses, {y0, . . . , y9}

Actual loss square of a single company - Cum. Paid Losses

0 1 2 3 4 5 6 7 8 9

...

AY 3 20.0 48.0 60.0 66.0 67.0 67.5 68.0 69.0 69.2 69.2

...

663

38



Table 13: Sample predicted cumulative paid losses, {ŷ0, . . . , ŷ9}

Predicted loss rectangle of a single company - Cum. Paid Losses

0 1 2 3 4 5 6 7 8 9

...

AY 3 20.0 48.0 60.0 66.0 67.0 67.5 68.0 69.0 69.2 69.5

...

664

AY3 Prediction Deviation =
∣∣∣∣∣ ŷ9 − y9

y9

∣∣∣∣∣ =
∣∣∣∣∣69.5− 69.2

69.2

∣∣∣∣∣ = 0.433%. (39)

10 Closing Comments665

10.1 Critique of the Inherent Model Limitations666

Although the performance metrics shown in Table 9 show us the predictive perfor-667

mance of the overall model, these results do not give us a nuanced insight of the668

inherent weaknesses of the overall model. The nature of the assumptions which669

were made in section “Modeling the data”, along with how the loss data develops670

towards the tails, causes the burden of accuracy of the predictions to weigh heavily671

on the later sub-models as opposed to the earlier sub-models. This is because the672

later sub-models have to not only base their predictions on the ever propagating673

errors of the previous sub-models, but also predict longer sequences with shorter674

input sequences. This imposes a unique challenge in that the predictions need to675

account for ever increasing dynamism of data, as the longer into the future, short676

term trends may not be preserved well (Sánchez-Sánchez et al., 2019).677

Unlike the beginnings of sequences, the loss development factors at the tails for678

almost all companies, regardless of the accident year, tend to approach and settle679

at 1.00. This is an instance of a “concept shift”, where the non-stationary nature680

of data causes the relationship of extracted features with predicted sequence to681

change over lag periods (Baier et al., 2020). This means that all sub-models can682

predict the tail well because the volatility of the tail is comparatively insignificant683

across all accident years and all companies, when compared to the volatility of loss684

development factors at the beginnings of the sequences. Under this scenario, the685

very nature of the ’cascading’ structure of the overall model presents an inherent686

39



limitation to how accurate the predictions of the later accident years can be. In687

order to study this in detail, the author turned to the entropy package from the688

scipy library. On the right, the predictions obtained from the overall model are689

stacked by company. At each lag period, and at each accident year, the loss devel-690

opment factors are extracted. The range of values obtained in this manner can be691

regarded as a distribution of sorts, unique to this particular lag period and acci-692

dent year. In a similar manner as explained before, the actual loss development693

factors at each lag period and each accident year, stacked by company, can be re-694

garded as a distribution. By comparing each pair of distributions, at each accident695

year - lag period pair, we develop a plot of the entropy at each respective point.696

The process of how this library is used is shown in Figure 19.697

698

Figure 19: How the entropy analysis works699

Figure 20 shows the resulting entropy plot. As anticipated, the earlier lags of700

later accident years show the most entropy, with a lighter shade showing higher701

values (lower is better). It should also be noted that the later loss development702

factors of any accident year are lower in entropy, affirming the inferences made703

about the nature of the overall model. One plausible reason for this flaw of the704

overall model may be the limiting characteristics of using a single sequence. Ide-705

ally, a second sequence may be able to enable the learning of more patterns. The706

40



predicted performances deteriorate for the later accident years and from this plot,707

we can infer that most of the deterioration occurs at the earlier lag periods and708

that this error is propagated to the later lag periods as well.709

710

Figure 20: Entropy analysis for the whole model711

10.2 Discussion712

This project was undertaken with the aim of exploring the possibilities of applica-713

tions of deep learning in the field of actuarial science. Whilst deep learning may714

not be as popular in comparison to the more conventional actuarial methods of715

analysis, there is little doubt of the impact it is due to make in the coming years,716

especially considering that explosion of the diversity and the vastness of the data717

that will become ripe for analytics in the future. This project is a minute attempt718

to contend with a fundamental actuarial problem, in the vast backdrop of the daz-719

zling field of deep learning.720

The biggest challenge faced in the context of implementing this project was721

finding good data that is representative of the real world data. Within this project,722

data from CAS was used. The nature of deep learning is such that it requires fairly723

large amounts of data. If larger data sets of comparable type were found, there724

41



is more than a fair chance that the predictions could have been of much more725

superior accuracy.726

Another aspect that needs to be highlighted here is the ability of deep learning727

algorithms to require minimal expert user input. However, this does not mean728

that we can transcend the limitations of pattern recognition imposed by funda-729

mental laws/theorems of statistics. A case and point of this is how and why we730

had to normalize loss sequences in a certain manner. The fact that only cumula-731

tive paid losses were used also imposed restrictions on the predictive power, since732

each accident year had only a single channel of a pattern sequence.733

Despite these limitations, other than the choice of how to normalize the data734

as loss development factors, almost all other decisions were related to program-735

ming/fundamentals of data science and statistics. The next possible frontier of736

this project would be the collection of diverse traditional and nontraditional data737

pertaining to loss reserving, into a single data set, and then building a model that738

can predict ultimate losses using this diverse portfolio of data.739

References740

[1] Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma,741

O., Santamarı́a, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021, March742

31). Review of deep learning: concepts, CNN architectures, challenges, ap-743

plications, future directions. Journal of Big Data, 20. https://doi.org/10.744

1186/s40537-021-00444-8745

[2] Amin, Z., Antonio, K., Beirlant, J., Charpentier, A., Dean, C. G., Frees, E.746

W., Gan, G., Gao, L., Garrido, J., Hua, L., Ismail, N., Kim, J. H., Okine,747

N.-A., Sarıdaş, E. S., Shi, P., Shyamalkumar, N. D., Su, J., Verdonck, T., &748

Viswanathan, K. (2020, August 23). Loss Data Analytics. Chapter 11 Loss749

Reserving. Retrieved September 25, 2021, from https://openacttexts.750

github.io/Loss-Data-Analytics/C-LossReserves.html751

[3] Baier, L., Hofmann, M., Kühl, N., Mohr, M., & Satzger, G. (2020, April 1).752

Handling Concept Drifts in Regression Problems - the Error Intersection Ap-753

proach. arvix. Retrieved October 31, 2021, from https://arxiv.org/abs/754

2004.00438\#755

42



[4] Basaldella, M., Antolli, E., Serra, G., & Tasso, C. (2018). Bidirectional LSTM756

Recurrent Neural Network for Keyphrase Extraction. In Digital Libraries757

and Multimedia Archive (182, 183). Springer. https://link.springer.com/758

book/10.1007/978-3-319-73165-0759

[5] Chain Ladder - Reserving in Python. (2021). Welcome to Chainlad-760

der. Retrieved October 10, 2021, from https://chainladder-python.761

readthedocs.io/en/latest/intro.html762

[6] Chollet, F. (2018). Deep Learning with Python. Manning Publications.763

https://learning.oreilly.com/library/view/deep-learning-764

with/9781617294433/OEBPS/Text/title.xhtml765

[7] Clark, R. C., & Rangelova, D. (2021). Accident Year / Development Year766

Interactions. CAS. https://www.casact.org/sites/default/files/2021-767

02/pubs_forum_15fforum_clarkrangelova.pdf768

[8] de Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2015, June 12). Us-769

ing the Mean Absolute Percentage Error for Regression Models. arvix. Retrieved770

October 10, 2021, from https://arxiv.org/abs/1605.02541771

[9] England, P. D., & Verrral, R. J. (11, June 10). Stochastic Claims Re-772

serving in General Insurance. British Actuarial Journal, 8(3). 10.1017/773

S1357321700003809774

[10] Feng, J., & Lu, S. (2019). Performance Analysis of Various Activation Func-775

tions in Artificial Neural Networks. Journal of Physics: Conference Series Paper,776

1237(2) 10.1088/1742-6596/1237/2/022030777

[11] Giles, C. L., Lawrence, S., & Tsoi, A. C. (2001, July). Noisy Time Series Predic-778

tion using Recurrent Neural Networks and Grammatical Inference. Machine779

Learning, (44), 161–183. https://doi.org/10.1023/A:1010884214864780

[12] Google. (2021, August 27). Machine Learning Glossary. Machine Learning781

Glossary. Retrieved October 30, 2021, from https://developers.google.782

com/machine-learning/glossary\#embeddings783

[13] Harej, B., Gächter, R., & Jamal, S. (2017). Individual Claim Development with784

Machine Learning [2017 Report by Austin]. Austin.785

43



[14] Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical786

Learning Data Mining, Inference, and Prediction (2nd ed.). Springer.787

[15] Meyers, G. G., & Shi, P. (n.d.). Loss Reserving Data Pulled from788

NAIC Schedule P. CAS. Retrieved October 28, 2021, from https:789

//www.casact.org/publications-research/research/research-790

resources/loss-reserving-data-pulled-naic-schedule-p791

[16] Mills, T. C., & Markellos, R. N. (2008). The Econometric Modelling of Financial792

Time Series (3rd ed.) Cambridge University Press.793

[17] Nwankpa, C. E., Ijomah, W., Gachagan, A., & Marshall, S. (2018, November794

8). Activation Functions: Comparison of Trends in Practice and Research for Deep795

Learning. Retrieved October 10, 2021, from https://arxiv.org/abs/1811.796

03378797

[18] Pascanu, R., Mikolov, T., & Bengio, Y. (2012). Understanding the exploding798

gradient problem. CoRR, abs/1211.5063. Retrieved October 10, 2021, from799

http://arxiv.org/abs/1211.5063800

[19] Radtke, M. (2016). Run-Off Data. In Handbook on Loss Reserving (pp. 241-801

245). Springer. 10.1007/978-3-319-30056-6\_32802

[20] Radtke, M. (2016). Separation Method. In Handbook on Loss Reserving (pp.803

247-254). Springer. 10.1007/978-3-319-30056-6\_33804

[21] Ramsay, C. M. (2007). New method of estimating loss reserves. In Proceedings805

of the Casualty Actuarial Society (Vol. 92, pp. 462-485). Casuality Actuarial806

Society.807

[22] Richman, R. (2020, August 26). AI in actuarial science – a review of recent808

advances – part 1. Annals of Actuarial Science, 15(2), 230 - 258. https://doi.809

org/10.1017/S1748499520000238810

[23] Sánchez-Sánchez, P. A., Garcı́a-González, J. R., & Coronell, L. H. (2019). En-811

countered Problems of Time Series with Neural Networks: Models and Archi-812

tectures - Difficulties in the prediction of time series with neural networks. In813

Recent Trends in Artificial Neural Networks - from Training to Prediction. Intech814

Open. 10.5772/intechopen.88901815

44



[24] Schmidt, K. D. (2016). Run-Off Triangles. In Handbook on Loss Reserving (pp.816

245-263). Springer. 10.1007/978-3-319-30056-6\_34817

[25] Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN)818

and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenom-819

ena, 404(3), 1. doi.org/10.1016/j.physd.2019.132306820

[26] Suliman, A., & Zhang, Y. (2015, January 25). A Review on Back-Propagation821

Neural Networks in the Application of Remote Sensing Image Classification.822

Journal of Earth Science and Engineering, 5. 10.17265/2159-581X/2015.01.823

004824

[27] Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction825

(Second ed.). The MIT Press.826

[28] Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2021). Linear Neural Network.827

In Dive into Deep Learning. https://d2l.ai/chapter\_linear-networks/828

index.html829

[29] Zhang, A., Lipton, Z. C., Li, M., Smola, A. J., Werness, B., Hu, R., Zhang,830

S., Tay, Y., Dagar, A., & Tang, Y. (2021). Recurrent Neural Networks.831

In Dive into Deep Learning. https://d2l.ai/chapter\_recurrent-neural-832

networks/index.html833

45


