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Abstract1 

Reserving techniques using aggregated triangle data are ubiquitous in the property casualty insurance 
industry. Starting with a predictive modeling framework that describes the full life cycle of a claim 
instead provides numerous benefits, including greater reliability of reserve estimates, faster recognition 
of mix changes, and avoidance of problems in pricing due to differences in development. Component 
development and emergence models in conjunction with simulation form an alternative framework for 
generating estimates of reserve need. Algorithmic reserves at the claim level for reported claims and at 
the policy level for unreported claims provide valuable information for downstream analyses, a bridge to 
the generally accepted triangle reserving paradigm, and validation of the underlying models. 

 
  

 
1 Much of the material in this paper is taken from a previous monograph “Individual Claim Development Models 
and Detailed Actuarial Reserves in Property-Casualty Insurance” by Chris Gross in 2021, available at 
cognalysis.com/resources/publications.  
 
The author would like to thank Michael Larsen for his thoughtful review of a draft version of this paper and his 
useful suggestions, and also thank Tim Davis and Kevin Madigan for their valuable contributions, comments, and 
suggestions to the 2021 monograph, many of which are incorporated here. 
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Note regarding the use of ‘IBNR’ in this paper: 

Unless specifically noted to the contrary, in this paper, “IBNR” will refer to only the provision for those 
claims that have truly not been reported as of the date of the analysis, and “case development” will be 
used to refer to the provision for additional development for known claims. 

 

Note on organization of this paper: 

This is a lengthy document owing to the significant work necessary to build a claim life cycle model. A 
reader that already accepts the argument of why such a framework is important may want to skip 
section 2. Another reader that is primarily interested in the motivation for this approach and down-
stream applications may want to skip sections 4 and 5, which are focused on the modeling details. 
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1.0 Introduction 
 

This paper describes approaches to incorporate detailed claim and exposure data into the actuarial 
process of estimating property-casualty reserves. Using detailed data provides additional insight into 
needed reserves. Since loss development considerations are critical to questions of pricing, significant 
insight can be gained in actuarial pricing as well. Internal management reporting also benefits, allowing 
for more reliable reporting of results at various levels of detail. 

Predictive models of various aspects of claim development (such as closure rate, claim revaluation, 
payment rates, etc.) within a time-step (month, quarter, year, etc.) are described, differentiating by 
policy and claim characteristics. Simulation then projects each open claim to an ultimate value using the 
combination of these models.  

We then describe actuarial case reserves, which provide an important bridge between detailed 
development models and the traditional triangle reserving framework. We illustrate the use of this 
algorithm as an alternative to traditional case reserves and discuss its benefits. Validation of the 
algorithm using report-period triangles will also be discussed. 

To develop a provision for unreported claims, the paper describes the creation of emergence models – 
report lag, frequency, and severity. Simulation is used to generate true IBNR claims, or the emergence 
models can be used directly to provide mean estimates of their value at a policy level at a point in time. 
Like actuarial case reserves, these policy reserves can be used as data element in the traditional triangle 
approach. 

The implications of using detailed actuarial claim and unreported claim reserves to support actuarial 
pricing efforts as well as internal management reporting will also be discussed. 

There is a growing body of literature regarding actuarial reserve estimation using detailed claim and 
policy data that the reader may wish to consider in addition to this paper, such as Parodi (2013), Antonio 
and Plat (2014), Korn (2016), and Landry and Martin (2022). 
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2.0 Why a Claim Life Cycle Model is Needed 
Analysis of triangle data is well established within the actuarial profession. The output from triangle 
analysis is well understood by professionals across the industry.  

Computing power and increased use of predictive analytics make it possible to substantially improve 
reserve analysis by systematically considering detailed claim and policy information. It is well 
documented in the actuarial literature2 that underlying changes in claim mix, case reserve adequacy, or 
settlement speed, if left undetected and unadjusted for, can lead to erroneous estimates. Most 
approaches within the profession have focused on identifying and correcting for such distortions.  

Several actuarial problems illustrate the advantages of using detailed data rather than reliance on 
traditional development triangles alone. We will discuss a number of these problems below. 

2.1 Mix Shifts 
Any significant difference in loss development patterns across claims and differences in expected loss 
ratios across policies has the potential to cause problems for triangle analysis unless the mix of claims 
and exposures is held reasonably constant. This problem is well-known, but due to the wide variety of 
exposures (deductibles, locations, policy forms, customer characteristics, etc.), mix changes can remain 
hidden for years without detection, when patterns have been shown to be conclusively different than in 
the past.  

Consider an underwriting unit that writes two classes of business. Until recently there has been a stable 
mix of business between these two classes with Class 1 making up the majority of the business. The 
book has had a loss ratio near 60%. Due to this acceptable loss ratio and the relatively insignificant 
amount of Class 2 business, differences in the performance of the two classes has remained undetected. 
Class 2 develops slower and has a higher expected loss ratio (90% vs. 60%). The graph below shows the 
different expected development patterns of the two classes. At year 3, Class 1 is 50% developed while 
Class 2 is only 35% developed.  

  

 
2 See Friedland, J.F., “Estimating Unpaid Claims Using Basic Techniques,” Casualty Actuarial Society, Third Version, 
July 2010. 



8 
 

<<Figure 1>> 

 

 

 

 

 

 

 

 

 

 

 

Differing development patterns of Class 1 and Class 2 business. 

The mix of business between the two classes was unchanging until 2013 when the company grew its 
Class 2 business. The triangle below shows the case-incurred losses:  

<<Figure 2>> 
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<<Figure 3>> 

 

 

 

 

 

Development Factors 

Examination of the triangle reveals little. The 2014 age 1-2 factor is the highest in the triangle, but not 
dramatically higher. The 2013 age 2 to age 3 factor isn’t the highest for this age. Since the beginning of 
the change in mix, there are only three data points in the triangle with which to observe a change in loss 
development. Since nothing significant is observed, it is reasonable for the actuary to conclude that 
there is no change. Even if a change in development were detected within the first two development 
periods, there is no information in the triangle about how this development will continue beyond age 3. 

Applying the measured LDFs produces the estimated ultimate loss ratios shown in the graph below. 
These estimated ultimate loss ratios for the last three years are very different from the true underlying 
loss ratios of the book.  

 
<<Figure 4>> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Estimated Ultimate Loss Ratio vs. True Loss Ratio 
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The estimated ultimate loss ratio for 2015 is particularly distorted. This is a result of the slower reporting 
of the Class 2 business and the application of a loss development factor which is not appropriate for the 
current mix of business. Without a mechanism to capture differences in expected loss ratios and 
development patterns at a level below the triangle, the actuary will be late in identifying the 
deteriorating loss performance and will mistakenly estimate an improving loss ratio. 

This example demonstrates how the impact of a shift in the mix of business can mislead the actuary. 
Detection of the problem could take years. Meanwhile the late detection can have devastating effects, 
as it will likely influence underwriting decisions. If the increase in Class 2 writings is noticed together 
with the apparent improvement in loss ratio, management could conclude that additional growth in 
Class 2 should be encouraged. Financial statements reinforce the idea until booked reserves deteriorate, 
years later. 

It is tempting to dismiss this example. In hindsight, the problem was easy to identify –a shift in the mix 
of business by class. Perhaps there are mechanisms in place to report on shifts of mix by class so 
changes can be evaluated early. The challenge lies in the wide variety of exposures commonly 
underwritten. Avoidance of this problem depends upon identifying that a mix-shift has occurred that 
results in a change in development. Companies can monitor for shifts by class, by geography, by 
deductible, limit, etc., but differences in development will not be obvious unless triangles are 
segmented along the dimensions that are shifting. It is not feasible to develop and analyze triangles by 
every dimension. Further, if differences in development are not identified, differences in loss ratios 
cannot be adequately identified until losses are mature. In the example given above, assume that the 
actuary was monitoring the mix of classes and considering the loss ratios of the individual classes, 
assuming that the development patterns were the same. In this case, it would look like Class 2 had seen 
a dramatic improvement in loss ratio (a mistaken view caused by an insufficient development pattern). 
Class 2 might be viewed as having a high loss ratio in the past when less of it was written, but now that it 
is a focus of the business, the loss ratio has improved dramatically. This is an illusion created by the 
slower development while in reality the loss ratio is still high. 

It is not at feasible to monitor a book of business for this type of problem across all possible dimensions, 
without a systematic, multivariate approach to modeling loss development and identifying problematic 
mix-shifts. Changing actuarial loss reserving from the current, aggregated approach is necessary to 
detect such problems before they cause significant financial damage.  

2.2 Changes in case reserving/timing 
Changes in case reserving practices within a company can cause significant difficulty in triangle-based 
reserving approaches. As with mix shifts, the problem is lack of detection. Diagnostics such as triangles 
of average case outstanding and triangles of closure rates are commonly used to detect changes, but the 
aggregation of data obscures measurement. Changes in case reserve adequacy may not be detectable in 
a triangle until evidenced by changes in loss development factors. Consider a scenario with a claim 
department under pressure to set case reserves lower while the underwriting department is under 
pressure to write higher severity accounts (both possible when a company is under pressure). This could 
result in average case reserve amounts that are similar to the past, despite the drop in case reserve 
adequacy. Aggregated data is insufficient to alert the actuary to the changes. The natural variability in 
loss development clouds the picture and makes it even harder to detect the change. It is financially 
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harmful to wait until the evidence from the aggregated data becomes conclusive. If the changes can be 
detected earlier, through systematic investigation of detailed data, significant damage can be avoided.  

Most actuaries are comfortable with inadequate or redundant case reserves, provided the aggregate 
level of adequacy does not change3. However, case reserve adequacy can vary widely across different 
segments of the claim portfolio. With the mix of claims constantly changing across many dimensions, 
aggregate case reserve adequacy is constantly changing, even with no change to how case reserves are 
being set for any particular type of claim.  

2.3 Projections and Monitoring of Results 
It is common to allocate aggregate reserves to a finer level of detail for the purpose of monitoring and 
managing various segments of the business (profit center, region/office, agency, etc.)  

Typically, the allocation is simple and based on earned premium, outstanding case reserves, payments 
to date, etc. The  simplistic allocations can create distortions. When the allocation of these bulk reserves 
impacts bonus and other incentive payments it is likely to also impact business decisions. If the bulk 
reserves are allocated in a way that does not reflect reality, misguided business decisions can result.  

It is natural when losses develop differently than projected to investigate the variance. When reserve 
estimates and development projections are calculated at a broad level and allocated naively the search 
for explanations is challenging. Answers often focus on large claims but miss broader issues until more 
variances are exhibited in subsequent periods. Similarly, underlying issues can remain hidden because 
the random nature of large claims obscures them.  

When the reserve analysis is performed based on individual claims (and policies in the case of 
unreported claims), the resulting estimate already exists at the finest level possible. There still will likely 
be some difference between management’s booked reserve and the analysis, but the detailed analysis 
provides a natural allocation basis for this difference. Not only does this lead to more appropriate 
business decisions, but also enables powerful management reporting that allows thoughtful drill-downs 
to other segmentations of the business without additional reserve development analysis. A detailed 
allocation that is tied directly to open claims, based on their individual potential to develop and to 
individual policies based on their likelihood of generating additional claims is more robust. Regular 
examination of development versus expectations can be monitored statistically at a detailed level to 
identify emerging trends instead of hunting for an answer when large variances are observed. 

2.4 Detect changes in environment 
There are often changes within a triangle over time that have nothing to do with mix of business, claims 
handling practices, or any other action of the insurance company. Examples of these types of changes 
are inflation, changes in litigiousness, or changes in nature of awards arrived at through litigation. 

Companies are certainly aware of and concerned about these changes and are often thinking about 
them. However, it is likely that these will go undetected, especially if traditional triangles are the only 
tools being used.  

 
3 Berquist, James R., and Richard E. Sherman, “Loss Reserve Adequacy Testing: A Comprehensive, Systematic 
Approach,” Proceedings of the Casualty Actuarial Society 64, pp. 123–184, 1977 
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A predictive analysis in which transaction date is itself a predictive variable is very helpful in detecting 
these environmental changes, identifying and measuring impacts observed in the past and giving 
context for the relative level of stability or instability in the observed environment. 

2.5 Cohesive framework across reserving and pricing 
Actuarial reserving functions and pricing functions are often seen as being distinct. Since pricing usually 
begins with a reserving analysis (explicitly or implicitly), and since reserve estimates are improved by a 
thorough understanding of changes in pricing and product strategy, the two disciplines are linked. When 
these functions operate separately, important information may not be communicated. Reserving 
actuaries may not be aware of all the changes across the products being written (mix changes, pricing 
decisions, etc.).  

Pricing actuaries  may miss important information about reserve development (changing case adequacy, 
differences in development across policies, etc.). This can distort pricing indications. With expanded use 
of predictive analytics in insurance pricing, it is easy to make erroneous conclusions by assuming that 
case-incurred loss differentials are indicative of ultimate loss differentials. Often this can lead to 
concluding that slower developing segments of the portfolio are performing better than they truly are 
and that faster developing segments of the portfolio are performing worse than they truly are. 

Using individual claim-based actuarial reserving approaches leads the reserving actuary to systematically 
consider changes in the mix of business and price level. Additionally, the resulting policy level reserve 
estimates allow the pricing actuaries to use more sound ultimate values in their analyses.  

2.6 Layer results/Reinsurance 
When considering expected loss within a loss layer, either for pricing or reserving for primary or 
reinsurance layers, there are additional challenges when using traditional triangle analysis. Excess layers 
may have limited experience in the history. The use of selected development patterns in different layers 
can lead to inconsistent results. For example, analyses performed gross and net of reinsurance, with 
development factors selected independently for each, with a thin ceded layer could lead to accident 
periods with negative ceded reserve estimates. 

Models of detailed reserve development help with this problem. The potential for claims to pierce into 
individual layers can be considered as part of one cohesive development model. 

For a ceding company, organizing the necessary information is straightforward. For assuming 
companies, this can be more problematic. Often, however, there is a requirement to report claim 
activity to the excess carrier/reinsurer when a claim exceeds a threshold, such as 50% of the retention. 
Modeling the detailed claim behavior of these sub-layer claims can provide significant information about 
the layer of interest. 

3.0 Model Overview 
The Claim Life Cycle Model (CLCM) described in this paper involves:  

• organization of data elements into tables that are readily modeled 
• development models that describe the time-step behavior of known claims 
• emergence models that describe the emergence of IBNR claims 
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• simulation of future development and emergence at a detailed level 
• creation of actuarial case and policy reserves 

The flow chart below summarizes this process. We will focus on individual parts of this process in the 
following sections. Blue rectangles represent data tables. Green squares represent predictive models. 
The arrows show dependencies within the process (colors added to improve readability).  

<<Figure 5>> 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 General Predictive Model Commentary 
Predictive models form the backbone of this approach. This paper does not prescribe the form of the 
predictive models, instead focusing on the various targets of prediction and how the different models 
work together to build the overall approach. But generally, as is the case with most predictive modeling, 
the models should: 

• Provide a framework for predicting the mean of the target variable, given the predictive 
characteristics. 

• Aim for parsimony. All potential predictive variables should be considered, but only those that 
are found to have predictive power should remain in the final model that is selected. Validation 
data should be used to compare alternative models to reveal which characteristics are actually 
providing predictive power, marginal to the other characteristics. Overfitting to training data 
should be rigorously avoided. 

• Test data should be held out. In addition to describing model veracity, this data becomes 
critical in this approach when simulating future results as will be discussed in section 5.1.3.  
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Since the individual time-step models will be used to simulate future development, with simulation 
results from one time step being used as inputs into the next time step, it is critical that models are 
robust. To that end, it is useful to use a modeling approach that includes credibility adjustment of model 
parameters, instead of a purely binary choice of whether the parameter remains in the model. Using 
iterative techniques such as Multiplicative Bailey Minimum Bias with credibility adjustments is a 
practical and robust approach to model parameterization, taken together with the discipline to remove 
extraneous variables, test model results, consider variable interactions, etc.,4.  

It is helpful to define the training dataset as the claims associated with a specific subset of policies. With 
all claims from an individual policy in one set or the other, overfitting risk due to non-independence of 
data between training and validation/test is reduced. When detailed data is later organized into 
triangles, the results will be more meaningful for training or test triangles, because all transactions for a 
policy will be in either one or the other, not scattered across both test and training data sets.  

4.0 Input Data 
4.1 Necessary Data 
Three tables are necessary to perform this type of analysis, a Claim Transaction table, a Claim 
Characteristic Table and a Policy Characteristic table:  

<<Figure 6>> 

 

 

 

 

 

 

 

 

 

 

 

 

 
4 See Minimum Bias, Generalized Linear Models, and Credibility in the Context of Predictive Modeling by Chris 
Gross and Jon Evans, 2021, Variance Vol 12 Issue 1 
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The Claim Transaction table contains the financial history of the claims. Every time there has been a 
payment (loss or DCC) or a change in case reserves, there is a record with the transaction, the date, and 
the claim ID. 

The Claim Characteristics table contains information about the claim, including the incurred date, and 
other available information. In addition to coded fields specific to the line of business, claim notes are a 
valuable predictor, typically through the use of topic assignment, such as by Latent Dirichlet Allocation. 
The Claim ID allows for joining to the transaction history. Also necessary is a policy ID, so that the data 
can be joined to the policy data. 

Some variables may be dynamic in nature (changing over the lifetime of a claim). These should not be 
used as predictors unless the changes themselves are modeled. To do this, a history of changes in the 
variable at the claim level needs to be made available, similar to the Claim Transactions table. 

The Policy Characteristics table includes the policy ID, the premium for the policy, and any available 
characteristics describing the policy. In some cases, the records can be more specific than policy (e.g., 
policy, class, and state), but only if the premium is available at that level and the Claim Characteristic 
table has the same dimensions. 

 

4.2 Data Organization 
Two tables are created to organize the data for modeling purposes, a Development Table and an 
Emergence Table 

<<Figure 7>> 
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The Development Table organizes the information by claim and age of development. A time step is first 
determined (monthly, quarterly, yearly), and every claim will have a record for each step, starting with 
the step in which the claim first appears. The following fields are necessary on this table: 

• Case Reserve at the beginning of the step 
• Case Reserve at the end of the step 
• Payments during the step 
• Payments to date 

Each record should contain the characteristics from the Claim Characteristics table and the Policy 
Characteristics table. The table can be thought of as being similar to a development triangle, but at the 
claim level and containing all the characteristics. 

The Emergence Table will be used for modeling IBNR claims and is a copy of the Policy Characteristics 
table, but with non-zero claim count added. For closed claims with positive payment amounts, these are 
taken from the transaction table. For claims that are still open, the claim count will be determined after 
simulation (to avoid counting future claims with no payment) 

Other fields will be added to the Development Table and Emergence Table in subsequent sections of this 
paper.  
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5.0 Component Development Models and Simulation 
We next will describe the various predictive models that describe the behavior of claims and the 
simulation used to bring these various models together into reserve estimates, first for the reported 
claims and then for the unreported claims. 

5.1 Reported Claims 
 

<<Figure 8>> 

 

 

 

 

 

 

 

 

 

 

 

 

 

This section will focus on developing a detailed description of the claim development process, by 
considering what happens within an individual time-step and how that behavior varies across claim and 
policy characteristics. Rather than focus on the ultimate value of claims (which is only observable for the 
older claims), we examine the behavior of a claim in a time-step. What is the likelihood that a claim will 
close in the next quarter? What is the likelihood that it will change in value? If it does change in value, 
how much? What is the probability of a payment? If the claim does have a payment, how much? By 
considering these components of development, we can develop an understanding of the process that 
can be extended to ultimate while still incorporating information from immature claims.  
 
Including covariates introduces modeling challenges when we extend the model to ultimate. For 
example, the case reserve is itself a predictive variable. The single period time-step model is not easily 
combined together across development ages to project an ultimate value. An individual claim may 
develop to varied potential values in the next step. Using the mean predicted case reserve and using it 
as a predictor for the next step is inappropriate. This is not an issue with more commonly used actuarial 
reserving methods because there is an implicit assumption of independence of the development factors 



18 
 

and the paid and/or incurred amounts to which they are applied5. Using this assumption of 
independence at an individual claim level is extremely problematic and unrealistic, which is why 
simulation across alternative paths is necessary. The following example illustrates this concept. 
 
Consider a simple claim development process in which an open claim has three possibilities in the next 
time-step:  

• the claim will close for nothing (with 1/3 probability) 
• the claim will close, paying out the current case reserve (with 1/3 probability) 
• the reserve will increase by 1, with no payment in the time-step 

 
In this example, a claim currently open, with a case reserve of 1 has an expected value after one time-
step also equal to 1 (0*1/3 + 1*1/3 + 2*1/3). If we take this expected value, treat it as a case reserve in 
the next time-step, and move it forward, it will also have an expected value of 1. Carried forward 
infinitely, the value is always 1. 
 
But when we consider each of the possible paths that this open claim could take, we see that this 
approach is incorrect. The expected value one time-step out is indeed 1, but two time-steps out it is  
(0*4/9 + 1*1/3 + 2*1/9 + 3*1/9) = 8/9. After three time-steps the expected value is 22/27. As the 
number of time-steps approaches infinity, the expected value of the claim approaches 3/4. This 
illustrates the problem of using the mean of a probabilistic model as an input in a subsequent model 
(either a later time-step or another component model). 
 
In order to develop an estimate of ultimate loss from these time-step models with covariates, we need 
to describe not only the mean result in a time-step for a given claim with its given characteristics, but 
also the distribution of potential results in that time-step for that claim. With the introduction of various 
component models, as discussed below, this becomes even more important. 
 
Possible approaches to projecting results for individual claims over multiple time-steps (and combining 
together the component models discussed below) include formulaic or numerical integration and 
stochastic simulation. With the level of complexity involved, and with flexibility of model choices 
regarding characterization of the distributions of the component models (and to a certain extent the 
component models themselves), this paper will concentrate on the simulation approach. 
 
Simulation practicalities suggest a need for modeling specific facets of claim development. When 
considering payment amounts and changes in case reserves, there are probability masses at zero (i.e., 
no payment and/or no change in the reserve). Instead of trying to incorporate these probability masses 
in the distribution of results, it is helpful to break the development process down into components 
which are modeled at each time-step for each open claim within the simulation. Examples of these 
components are whether a claim closes, whether the value of a claim changes, whether there is an 
incremental payment, how much is the change in the value of a claim given that one occurs, and how 

 
5 This assumption is not always valid for aggregated data either and can cause problems for triangle analysis, but 
the assumption is not nearly as problematic as it is when considering claim-level development. 
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much is the payment given that one occurs. The process is to model these behaviors individually and 
sequentially for each open claim at each time-step and simulate them accordingly6. 
 
Thus, the initial task on the path to building a comprehensive model of claim-level development is to 
build time-step models of each of these development components. In addition to highlighting 
differences between claim-types, this yields insight into changes occurring within the development 
process and their impacts on the needed reserve.  
 
A specific model framework is provided here as an example. This is by no means the only approach that 
could be taken. By showing a specific example, we illustrate how to overcome some particular 
challenges.  
 
Claim Development Models: 

• Closure Probability 
• Change Probability 
• Payment Probability 
• Change Amount (Large) 
• Change Amount (Small) 
• Reopen Probability 
• Reopen Amount 
• Recovery Probability 
• Recovery Amount 

 
Before discussing each of these models individually, we first define some terms that will be used across 
the different models. 

 
5.1.1 Definitions (for a given claim at a given time-step):  
Beginning Case Reserve –case reserve at the beginning of the time-step 
 
Ending Case Reserve – case reserve at the end of the time-step 
 
Paid Loss – incremental paid loss amount within the time-step 
 
Previous Paid to Date – total of all paid Loss for previous time-steps 
 
Ending Value – Ending Case Reserve + Paid Loss. This represents an amount that is comparable to the 
Beginning Case Reserve. 
 
 

 
6 This process is similar in nature to a Markov Chain, in that each step in the chain is probabilistic, but a Markov 
Chain has the property that the future is independent of the past. The fact that paid losses to date are often one of 
the key predictors for the next timestep suggests it would be inappropriate to call this a Markov Process. 
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“Loss” here is used generically to mean indemnity, expense, medical payment, or any combination of 
these7.  
 
 
General Variables included in each model 
Beginning Case Reserve 
Development Age 
Transaction Date 
Accident Period 
Claim Characteristics 
Exposure Characteristics 
Previous Payments 
 
Development Age, Transaction Date, and Accident Period are redundant within two time dimensions. It 
is useful to consider each of them when constructing a component model because they each represent 
different things, but in a final version of any component model, it is advisable to include at most two of 
these variables to avoid model instability and complexity. Parameters for Transaction Date can reflect 
systematic changes that have occurred, but care will need to be taken to consider the prospective 
outlook, which may differ from the past. Accident period parameters can also be predictive, but often 
indicate changes in characteristics that have not been identified. Where possible, it is optimal to find 
and include such characteristics directly. Care should be taken to avoid using accident period as a proxy 
for development age (since the more recent periods will contain only immature development ages). In 
such cases development age should be used in place of accident period to avoid projecting development 
for immature accident periods that is characteristic of early development as they progress into later 
development periods. 
 
 

5.1.2 Potential Models to be Employed in a Time-Step Model 
The following are examples of component models which can be used in the development of a time-step 
modeling process. 
 
5.1.2.1 Closure Probability Model 
This model estimates the probability that a given claim will close within the time-step.  

Definition: P(Ending Case Reserve = 0 | Beginning Case Reserve > 0 or Reopened = True) 
 
We are defining a claim as being open by considering the case reserve. When the case reserve is larger 
than zero, the claim is considered open. Using the case reserve as the indicator avoids potential issues 
with inconsistent coding of claim status over time or timing discrepancies between status changes and 
case reserve changes. There are sometimes notices of claims, particularly in claims made lines, that may 
be then considered open but have no case reserves. Consider using a notional case reserve of some 

 
7 More sophisticated model specifications can use some of these payment types as predictors of others (increasing 
the number of models to be created). Barring this, it may be appropriate at times to consider individual payment 
types separately and in others to consider the sum across payment types.  
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small amount to identify such claims for actuarial modeling purposes if this approach to defining claim 
status is used. 
 
5.1.2.2 Change Probability Model (for claims remaining open)  
This model estimates the probability that a claim will change in value during the time-step. 
 
There is a possibility that in a time-step there may be no change in value. When projecting losses 
forward, reflecting this probability mass is more realistic than simply modeling the change in values 
broadly.  
 
The probability of claim changing in value is typically very high for a claim that is in the process of 
closing. Including a variable that indicates whether the claim closes in the quarter would capture this, 
but it is likely that there would be numerous interaction effects between this variable and the others. 
For that reason, we have separated this model into one that considers only those claims that are 
remaining open vs. those that are closing. 
 
Definition: P(Ending Value ≠Beginning Case Reserve | Beginning Case Reserve > 0 and Ending Case 
Reserve > 0) 
 
Note that we are excluding claims that have zero case reserve at the beginning of the time-step. 
Changes in values of these claims is contemplated by the reopen probability and reopen amount 
models. 
 
Also note that the very definition of this model depends on what is considered the result of one of the 
other component models (the closure probability model). This dependency will be important to consider 
when it comes time to simulate development. 
 
5.1.2.3 Change Probability Model (for closing claims) 
This models the probability that a claim which is closing will change in value. 
 
Definition: P(Ending Value ≠Beginning Case Reserve | Beginning Case Reserve > 0 and Ending Case 
Reserve = 0) 
 
Often this probability is very close to 1. For many cases quantifying this probability across all claims may 
be sufficient, with no additional differentiation provided by predictive variables.  
 
5.1.2.4 Reopen Probability Model 
This model is for the possibility that a given claim, closed at the beginning of the timestep, will have 
additional payments during or case reserve at the end of the time-step. This also includes payments on 
claims technically not reopened, but where additional payments occur after the case reserve goes to 
zero.  
 
Definition: P(Ending Value > 0 | Beginning Case Reserve = 0) 
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The number of time periods that the claim has been closed is a key predictor, with additional payments 
often occurring in the period immediately following claim closure. 
 
5.1.2.5 Reopen Amount Model 
Given that a claim which was closed at the beginning of the time-step has additional (positive) payments 
or case reserves in the time-step, what is the amount? 
 
Definition: E(Ending Value | Beginning Case Reserve = 0 and Ending Value > 0) 
 
In this approach, the ending value, i.e., the ending case reserve amount plus the incremental payment, 
is used as the target variable of the model. The portion of this value that is paid out vs. that that remains 
as case reserves at the end of the time-step will be covered in the partial payment model.  
 
 
5.1.2.6 Change Amount Model(s) 
This model defines the changes in value of a claim that is open at the beginning of a time-step, given 
that it changes.  
 
The ending value (incremental payment plus ending reserve) of the claim in the time-step is expected to 
be strongly related to the case reserve at the beginning of the time-step (i.e., a strong positive 
correlation between the two), albeit with significant variation. This relationship is far from proportional, 
however, with small case reserve amounts growing by much larger factors on average than large case 
reserve amounts. It is easier for a $1000 reserve to grow by a factor of 20 than it is for a $1,000,000 
reserve. With a multiplicative factor model framework, the case reserve amount itself will often become 
the most important predictive variable, and the model can become very sensitive to slight binning 
changes for small case reserves. 
 
Another issue is that often for very small case reserve amounts, the monotone increasing relationship 
between the beginning case reserve and the ending value breaks down. Often this is due to the 
existence of “signal” reserves or other place holders that do not necessarily have a monotone 
relationship with the ending value. For example, a value of “1” for the beginning reserve may specify a 
particular type of claim, “2” indicate a different type of claim and there be no expectation that a “2” 
claim would be double the severity of a “1” claim or even that it would have a higher severity. For this 
reason, it is often beneficial to use separate models for small case reserve claims and for large case 
reserve claims. 
 
It is helpful to transform the beginning case reserve itself into an exposure variable more closely related 
to the ending value, before even considering the impact of other predictive variables. One such “change 
amount exposure” variable is shown graphically below: 
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Below the small case cutoff value, there is not an increasing modeled relationship between the 
beginning case reserve and the expected ending value. Above that value there is a linear, increasing 
relationship between Beginning Case Reserve and the expected Ending Value. The inclusion of an 
intercept in the relationship for large cases provides the more significant multiplicative differential 
between smaller beginning values and the ending value. This avoids the problem of sensitivity to bin 
determination for the case reserve variable. The parameters defining this transformation are the two 
linear parameters above the cutoff (two for claims that are closing and two for claims that will remain 
open), the single parameter below the cutoff, and the cutoff itself (six total parameters). Given a specific 
cutoff, the linear parameters can be calculated by least squares regression, and the parameter below 
can be calculated as an average of the ending value below the cutoff. The total least squares across the 
entire set of observations can be tabulated, and the optimum cutoff value can be determined using 
numerical minimization of the least squares amount. In some cases, the minimum least-squares amount 
will be at a cutoff of zero. It is appropriate to limit the other parameters to be non-negative as well, so 
boundary solutions should be considered. 
 
 
Preliminary Calculation 
Where Ending Value ≠ Beginning Case Reserve, define Change Amount Exposure =  
   Csmall,0  where Beginning Case Reserve ≤ Small Case Cutoff 
   Cclose,0 + Cclose,1 * Beginning Case Reserve where Beginning Case Reserve > Small Case Cutoff and Ending Case Reserve = 0 

   Copen,0 + Copen,1 * Beginning Case Reserve where Beginning Case Reserve > Small Case Cutoff and Ending Case Reserve > 0 

 
with Csmall,0,Cclose,0, Cclose,1, Copen,0, Copen,1 and Small Case Cutoff estimated by minimizing least squares on 
the training data with Ending Value as the target variable. 
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Change Amount Model (small case reserve) 
This model covers the cases where there is not a generally increasing relationship between beginning 
case reserves and ending value in the time-step. 
 
Definition: E(Ending Value | Ending Value ≠ Beginning Case Reserve and Beginning Case Reserve > 0 and 
Beginning Case Reserve ≤ Small Case Cutoff) 
 
The binned case reserve can be used as a categorical variable in this model (together with the other 
variables being considered). If there are specific signal reserve values, they can be set as distinct bins. A 
more sophisticated model would be to build models of changes of state from one claim type to another, 
within the different types of signal reserves if it is common for claims to transition from one type to 
another before transitioning to an actual case reserve reflective of the expected loss payment amount. 
 
Change Amount (large case reserve) 
This model reflects changes in value for claims with beginning case reserve larger than the cutoff value. 
 
Definition: E(Ending Value | Ending Value ≠ Beginning Case Reserve and Beginning Case Reserve > Small 
Case Cutoff) 
 
Using the Change Amount Exposure variable discussed above, a multiplicative model can be used by 
setting the expected ending value of the claim equal to a base factor multiplied by the change amount 
exposure variable, multiplied by modifiers for each of the other variables being considered. The Change 
Amount Exposure variable may also be binned and treated as a categorical variable to capture possible 
imperfections in the simple linear relationship used to create the exposure variable. 
 
5.1.2.7 Payment Probability Model 
This model describes the probability that there is a payment on a claim for which one is possible. 
 
Definition: P(Paid Loss > 0 | Ending Value > 0) 
 
Notice that the way we have defined the “Ending Value” variable handles all the possibilities for 
payment since payment itself is included within the ending value (if paid loss is > 0 then ending value 
must also be > 0). It may seem circuitous to construct the model in this way, but it is helpful to have a 
single model (the change value model) that governs both the incremental payments and ending case 
reserve generally, and then we consider a potential payment that is bounded between 0 and the ending 
value. 
 
An important variable to include in this model is whether the claim closes in the period. As such, this 
model will be dependent on the closure probability model when projecting forward. 
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5.1.2.8 Partial Payment Amount Model 
In the case where a payment occurs in the time-step and the claim closes, the payment amount is equal 
to the ending value variable. In cases where there is a payment made but the claim remains open (i.e., 
ending case reserve > 0) we need to know how much of the ending value is in the form of a payment 
and how much remains as case reserves. This partial payment model describes that relationship. 
 
Definition: E(Paid Loss | Ending Case Reserve > 0 and Paid Loss > 0)  
 
The Ending Value variable is important for this model, giving an upper bound for the payment amount. 
 
5.1.2.9 Recovery Probability Model 
What is the probability that a claim with previous payments will receive a recovery (i.e., negative 
payment) of some amount within a given time-step? 
 
5.1.2.10 Recovery Amount Model 
Given that there is a recovery in a time-step, what is the amount?  
 
5.1.2.11 Dynamic Variable Model(s) 
Variables that change over time (dynamic variables) pose additional challenges, just as they do when 
used for segmentation of triangles in a traditional analysis. Often such variables are predictive for future 
claim behavior but in order to be incorporated, their ability to change must itself be modeled. 
 
Consider a “pension indicator” variable that indicates a workers compensation claimant is receiving 
permanent indemnity payments. That determination may change several development periods after the 
initial determination is made. If segmentation of reserving triangles uses this indicator, history changes if 
only the current state of the claim is used in the segmentation. 
 
A similar issue exists in the claim life cycle model approach. Training a model using the current value of a 
dynamic variable for observations before it took its current value represents a model “cheat” and is not 
appropriate. The value of that variable that existed as of the observation should be used. This is directly 
analogous to the triangle segmentation problem described above. If the variable is to be used as a 
predictor, then it also becomes necessary to model and simulate changes in that variable. 
 
An example of one of these state change models is for a dynamic variable that takes values A, B, C, and 
D. Four separate predictive models could be created: 

• What is the probability that there is a new value? 
• What is the probability that the value becomes A given that there is a change? 
• What is the probability that the value becomes B given that there is a change, and it doesn’t 

become A? 
• What is the probability that the value becomes C given that there is a change, and it doesn’t 

become A or B? 
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There is no need for an additional model for the probability of becoming D since the other models fully 
describe this situation. The value of the variable at the beginning of the time-step is typically an 
important variable. Each of the other predictive variables should be considered as possible predictors.  
 
5.1.3 Claim Development Simulation 
 
Each currently open claim is simulated forward one time-step using each of the Claim Development 
Predictive Models over a specified number of paths. Those paths still open are simulated forward 
another time-step. This process is continued until all claim paths are closed. 
<<Figure 10>> 
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<<Figure 11>> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Additionally, claim re-openings are simulated and projected until they are re-closed, both for currently 
closed claims, as well as for currently open claims that close. 
 
Before time-step 1: 

1. Generate a number of paths for each open claim 
2. Simulate reopening from current inventory of closed claims, schedule them for reopening in 

later time-steps, and assign a path number 
3. Simulate Ending Value for each of the reopened claims in the time-step in which reopened 

 
In each time-step, for each claim-path combination: 

1. Increment development age 
2. Simulate changes in dynamic variables (other than the case reserve) 
3. Select which of the claim-paths close 
4. Select which of the claim-paths change in value 
5. Select which of the claim-paths have a payment 
6. Simulate Change Amount Exposure for each claim-path 
7. Simulate Ending Value for claim-paths with Beginning Case Reserve > Small Case Cutoff 
8. Simulate Ending Value for claim-paths with Beginning Case Reserve <= Small Case Cutoff 
9. Set Ending Value = Beginning Case Reserve for claim-paths that do not change in value 
10. Simulate Paid Loss on (0, Ending Value] for those claims having a payment 
11. Set Ending Case Reserve = Ending Value – Paid Loss 
12. Select which closed paths will reopen later, and schedule them 
13. Simulate Ending Value for each of the claims to be reopened 
14. Repeat the process until Ending Case Reserve is zero for all claim-paths 
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Notes on Simulation 
Random selections for binary models (such as Closure) are based on calculating the probability from 
the appropriate predictive model (using predictive characteristics) and simulating a Bernoulli. 
 
The simulations for continuous variables (such as Ending Value, Paid Loss, etc.) are more 
challenging. Distributional forms can be used, but they are likely to be naïve with regard to 
distributional differences across variables. It is not the exception, but rather the norm, that the 
variance to mean as well as relationships for higher moments are inconsistent across the data. This 
problem becomes more problematic for this simulation due to its chained nature across time. The 
simulated outputs from the first time-step are the inputs into the second time-step, the second into 
the third, and so on. Simplifying assumptions that may be reasonable in a single time-step may 
distort into unrealistic projections when compounded. The case reserve itself is typically one of the 
more important variables predictive of changes, with small reserves able to grow by a large factor, 
and large reserves unable to grow by large factors. Imposition of limits, actual or practical, can also 
keep simulations from developing out of control.  
 
One approach to reflecting nuances not necessarily reflected in a single distributional form is to use 
bootstrapping techniques to simulate. In this way, differences in variability and higher moments 
across different categories of claims can be reflected. With many variables, it is unlikely that there 
will be sufficient observations of each combination of variables to represent the potential variability 
for any given risk, but by dissembling error terms across variables, randomly sorting, and then 
recombining them, a more nuanced reflection of variability can be achieved. By sampling residuals 
from the test data instead of training data, model and parameter risk are contemplated. The 
approach is highlighted in the following steps: 

• Apply the predictive model to the records in the test data 
• Calculate the residual for each test data record 
• Allocate/disaggregate the residuals to each of the various predictive characteristics for each 

record (we will discuss this step in greater detail below) 
• For a given claim-path-timestep to be simulated, randomly select one disaggregated 

residual for each predictive characteristic, from among the set of matching characteristics 
from the test data 

• Combine the residuals for the claim-path-timestep to a single residual 
• Combine the modeled residual and the expected result to give a simulated value 
• Apply limits or other constraints 
• Rescale the mean and variance across paths if necessary 

 
The disaggregation of test data residuals across predictive characteristics is what allows this 
approach to generate variability patterns that are like what has been observed for similar claims in 
the past, while still allowing for combinations of characteristics that have not been observed. With 
skewed, positive distributions, it is helpful to use multiplicative residuals rather than additive 
residuals. 
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The example below illustrates the concept of this type of bootstrapping with two predictive 
characteristics, State and Class. The concept is generalizable for more variables. 
 
<<Figure 12>> 
 
 
 
 
 
 
 
 
 
<<Figure 13>> 
 
 
 
 
 
 
 
 
 
The square roots in the last two columns of the above table are in recognition of the reshuffling of 
residuals across characteristics that will occur in the simulation. If columns I and J were used 
directly without the square root, resulting variability would be too low, because the correlation 
between the disaggregated residuals at the record that exists with the observed residuals is 
eliminated when the simulation draws are performed independently across the characteristics.  
 
Note that in the above approach, more of each observed residual is assigned to the variable with 
the stronger predictive effect. The predictive factors in this example are normalized to 1, so a factor 
close to 1 is an indicator that the characteristic value does not describe much of the difference in 
the target of prediction. The embedded assumption in assigning the residuals in this way is that the 
stronger the factor (further from 1) the more of the residual is assigned to that variable. 
 
The table below shows a couple of simulated results using the approach. 
  
<<Figure 14>> 
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The date of the transaction (calendar period) may be one of the predictive variables in one or more of 
the component development models used in the simulation. Often this will describe changes in claim 
handling and the underlying claims environment. The actuary should take care when considering the 
appropriate factor to use in simulation as the future dates do not have an explicit factor. One logical 
option is to use the most recent observation. Another may be to use the long-term average. The impact 
of such a choice can be quantified by comparing alternative simulations varying the assumption. 
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5.2 Unreported Claims - Component Emergence Models and Simulation 
 

<<Figure 15>> 

 

 

 

 

 

 

 

 

 

 

 

 

 

Earlier sections focused on the development of known claims. We must also estimate of the ultimate 
cost associated with unreported claims. 

Not having been reported, the potential for these claims is driven not by claim characteristics (which do 
not yet exist) but only by exposure (i.e., policy) characteristics. To simulate claims with specific 
characteristics detailed models to predict the characteristics are necessary. It is easier to simulate the 
ultimate values of the IBNR claims directly, rendering the claim characteristics unnecessary. Since the 
ultimate value is being directly simulated, the timing of payments is not simulated. The simplification of 
the simulation process by concentrating on ultimate payment amount is dramatic, however. Timing of 
payments on IBNR claims (including their impact on inflation effects) may be modeled separately if this 
is an important desired output. 
 
 

5.2.1 Component Emergence Models 
 
Describing the simpler approach, there are three basic component models required to predict the 
unreported claims – report lag, frequency, and severity. For each of these, we will focus on claims that 
have a non-zero ultimate value.  
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5.2.1.1 Premium Model 
 
Premium is a natural starting point for modeling frequency and severity. In traditional triangle reserving 
approaches, Bornhuetter-Ferguson analyses use premium as an input, but it is important to ask what 
premium should be used. Collected premium can introduce inconsistencies due to differing levels of rate 
adequacy. These inconsistencies will distort the results. Premium at a consistent rate level across all 
policies is ideal. Neutralizing changes in rates charged is useful. (Bodoff, 2009). This is also true for 
detailed reserve modeling.  
 
While companies often have processes to measure changes in rates over time, these measures often are 
problematic. One approach is to compare historically-rated and re-rated premium by policy. This 
method breaks down when discretionary pricing factors such as schedule mods are significant. To 
overcome this challenge, the premium charged for each expiring and renewing policy is compared, 
which considers impacts like changing schedule mods. New and non-renewing business is ignored. If 
either of these ignored cohorts were written at a different rate than the renewing book, the impact to 
the rate level is not captured. Sometimes average rates or average mods over time including new and 
renewal accounts are considered, but these measures assume that the mix of business has remained 
constant, which is rarely the case. 

A predictive model can be used to simultaneously incorporate all these considerations to measure 
changes in premium rate level over time. The target of the prediction is the premium itself. The 
predictive variables are the rating and underwriting characteristics, such as class, geography, deductible, 
limit, new vs. renewal, etc. The policy effective date is a key predictor indicating rate changes over time, 
adjusting for changes in mix. Interaction effects should be considered between the policy effective date 
variable and other variables as it may indicate targeted pricing actions.  

Since the parameters for policy effective date provide a rate change across time, adjusting for other 
variables, the resulting policy effective date curve represents a vector of rate adjustment factors that 
can be used to restate historical premium to a common level. If interaction effects were found between 
effective date and other variables these adjustments should be included in the on-leveling. 

This on-level premium, which we will call the “Reference Rate” is useful as a starting point for predicting 
claim frequency and severity. It is a modeled premium that is normalized for changes in rate over time 
and reflective of statistically significant impact of key rating variables. Note that this premium is not 
necessarily actuarially sound but is stated at a consistent (or benchmark) level of adequacy for all 
policies within the book being analyzed and reflective of policy characteristics. As such, this Reference 
Rate premium is an appropriate base for frequency and severity analyses because it removes distortions 
arising from differences in rate adequacy over time and across accounts. 

In addition to the Reference Rate premium, we can calculate the ratio of Written Premium to Reference 
Rate premium at the policy level. This can be included as a separate predictive variable in the models. 
This ratio may be impacted purely by market forces (in which case it is unlikely to be predictive of 
frequency or severity) or it could be indicative of differences in the perceived risks of the policies not 
captured by the other fields included in the analysis (in which it could be predictive). Including it as an 
additional predictive characteristic will help make the determination.  
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The modeled premium as well as the ratio of written premium to reference rate are being discussed in 
this section due to their high importance for modeling frequency and severity. These characteristics are 
also potentially useful for the other models previously discussed. It is beneficial to run the premium 
model before running these other models so that these two new variables can be included as predictors. 

 

5.2.1.2 Report Lag Model 
We define the report lag as the time difference between the incurred date and the date reported.  
 
One problem with modeling the reporting lag across policy characteristics is that we have incomplete 
data that we would like to incorporate. Average observed lags are conditional on the claim already 
having been reported. Our true target is the unconditional report lag, i.e., the average lag after all claims 
have been reported.  
 
One way to approach this is by adjusting the observed lag for each claim to try to remove the bias given 
that it is conditional on the age of the policy. This adjusted observed lag for each claim can then be used 
as the target of prediction in our model, allowing us to model differences across predictors. First, we 
calculate an expected lag L on non-zero lagged claims across the portfolio by starting with the observed 
average and  
 
    <<Figure 16>> 
 
 
    <<Figure 17>> 
 
 
 
 
Where Report Lag > 0, iterating until L converges. Claim Age is calculated based on the ‘as of’ date of the 
analysis. 
 
A value of cdfj is determined for each claim, equal to the observed percentage of claims reported by the 
same lag or earlier as the claim in question, excluding from the calculation any claims that are older at 
the valuation date than the claim in question. For example, if a claim were reported 25 days after the 
incurred date, and the claim is now 190 days after the report date, cdfj for that claim would be the 
percent of those claims that were reported within 25 days within the population of claims that were 
incurred and reported within 190 days.  

lagVariable (the target of prediction) for the claim is then set as:  
lagVariablej = - L * log(1-cdfj) where Rj > 0 and the simulated ultimate > 0 
lagVariablej = 0 where Rj = 0 and the simulated ultimate > 0 
lagVariablej = NULL where simulated ultimate = 0 (claims with ultimate=0 are excluded from the 
report lag model) 
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5.2.1.3 Frequency Model 
 
Observed claim frequency is dependent on the maturity of the policy, due to the lag between incurred 
date and report date. Therefore, reporting lag should be modeled first, and the measures of claim 
frequency can be relative to a premium that has been adjusted to reflect the maturity of the policy due 
to this reporting lag as well as for any unearned portion of the policy. 
 
In addition to adjusting for earning and report maturity, using premium that adjusts for rate level 
changes such as by using the Reference Rate premium described earlier avoids problems with differing 
rate adequacy. 
 
The target of prediction is the observed non-zero claims count for each policy. For the closed claims, this 
is trivial, but for the open claims the author suggests selecting one single path at random from the claim 
development simulation to determine whether each claim is non-zero for purposes of supplying this 
target. 
 
In addition to policy fields of interest, the effective date of the policy should be included as a potential 
predictive variable to measure frequency trend. In the case where premium is not adjusted to a 
constant rate level, the effective date variable will also reflect differences in rate. 

 
5.2.1.4 Severity Model 

 
For modeling claim severity differences across policy characteristics, we are interested in ultimate claim 
severity. Case-incurred losses include whatever distortions exist in the case reserves. One solution to 
this problem is to use closed claims only when building a severity model. Unfortunately, this introduces 
bias due to differences between open and closed claims. One approach to removing open/closed bias 
could be to include closed claims only from periods that are essentially fully developed, but this will 
exclude valuable information about more recent claims. When trend is present or where the underlying 
claim severity environment is otherwise changing, this loss of recent information is problematic. Instead, 
by first developing the known claims to an ultimate level, before modeling differences in claim severity, 
we can include the open claims – eliminating the open/closed bias, but without the distortions caused 
by case reserves developing differently across different types of claims.  
 
Using the mean projection of non-zero ultimate payments for a claim on those claims that are currently 
open will tend to underrepresent the variability of the ultimate claim value. This can be problematic 
when being used in predictive models, particularly when testing alternative models against each other, 
but also simply for characterization of the variability of severity generally. For this reason, it is useful to 
select the same simulated path for each open claim that was used in determining non-zero claim count 
and including only those selected claims that develop to a non-zero value for the severity analysis. 
 
The relationship between report lag and loss severity is typically strong, and generally the difference 
between the incurred date and the reported date should be included as a potential predictor.  
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As with claim frequency, the policy effective date is a potential predictor, representing severity trend.  
 
Modeling claim severity is one of the more challenging aspects of predictive modeling owing to 
severity’s high skewness. For smaller sections of the portfolio of observations the lack or inclusion of a 
single large observation can make a significant difference in the measurement of severity. Adding a 
credibility component to the modeling process will help avoid being too sensitive to the observed data. 
However, when observations cannot be completely relied upon it puts higher importance on the 
complement of credibility. Even if credibility adjustment is not made other than as a binary choice of 
whether a parameter is “in” or “out,” the complement of credibility is important. A common assumption 
is that if a statistically significant difference is not found, none exists. This is a dangerous assumption, 
particularly for small segments of the data. For example, consider a workers compensation insurer that 
writes mostly low-hazard accounts. The few high-hazard accounts likely have had few claims given their 
low-frequency nature. It is likely that there is little or no statistically reliable difference between the 
severity that has been observed between the high-hazard and low-hazard accounts. It would be a 
mistake to say that these two groups of accounts have the same severity. The insurance marketplace as 
well as the rates being used at an insurer (often reflective of broader experience, such as a me-too filing 
or bureau rating) includes important implicit information about severity potential. Frequency modeling 
is far more robust than severity, and the ratio of premium to modeled frequency works well as an 
exposure variable, being an a priori indicator of severity potential. If statistically significant differences 
are not found relative to this expected severity, the market or rate plan wisdom simply remains 
unaltered. Said differently expected loss ratio is more likely to be consistent across risks than severity.  
 
To generalize on this concept, we can determine this “expected severity” exposure variable to be equal 
to the prediction from a linear regression of non-zero ultimate claim amount to the ratio of Reference 
Rate premium to modeled frequency (at the claim level). In this way the hypothetical relationship 
between premium, frequency, and severity can be broadly tested rather than assumed. If the slope 
parameter is not statistically significant the a priori opinion for the covariate model is “no difference in 
severity.” If the constant parameter is negative or statistically insignificant it can be left out and the a 
priori opinion is “severity strictly inverse to frequency.” With both parameters present, there is an 
inverse relationship between frequency and severity, but flatter. 
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5.3 Unreported Claim Simulation 
<<Figure 18>> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
The simulation process for the unknown claims is as follows: 
 

1. Each policy that still has potential for claims is assigned a policy maturity factor based on its 
modeled report lag and the portion of the policy period that has been earned. Expected 
unknown claims are calculated as the premium multiplied by (unity minus the maturity factor), 
and then applying the frequency model to this amount based on account characteristics. 

2. Individual claims occurrences are then simulated for each policy with a mean equal to this 
number of expected unknown claims. Paths are assigned randomly. 

3. Date of Loss and Report lag are simulated for each of the emergence claims according to the 
report lag model (Date of Loss is necessary to generate incurred period statistics). 

4. Ultimate severity is simulated for each of the emergence claims according to the severity model. 
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<<Figure 19>> 
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After simulating emergence, a view such as the following can be constructed.  

<<Figure 20>> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This report can be directly compared to what is produced using a traditional triangle analysis, with 
greater detail owing to the specifics observed during simulation. 

6.0 Alternative Data Elements and Triangle Specification 
This section will discuss the creation of Actuarial Case Reserves (for reported claims) and Actuarial Policy 
Reserves (for unreported claims) based on the observed history of closed claims, supplemented with the 
simulated projections. The benefits of creating these new data elements are significant across actuarial 
practice and insurance company management. 

 

6.1 Building and using an Actuarial Case Reserve Algorithm 
One benefit of using the time-step component models and simulating individual claims to ultimate is 
that additional insight into the claim life cycle is gained. Differences in settlement rates of claims across 
predictive variables, volatility differences, etc. are revealed. Changes in claim management practices 
over time are more easily characterized and identified by the actuary. On the negative side, the 
simulation process to bring all the component models together and project over multiple time-steps can 
be challenging to audit due to its inherent complexity and can be time-consuming. One approach to 
summarizing the combined result of the component development models and the resulting simulation 
to ultimate is to create an Actuarial Case Reserve Algorithm. 
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<<Figure 21>> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The motivation for the creation of Actuarial Case Reserves goes beyond that of summarizing and 
validating the results of a Claim Life Cycle Model. It has the potential to solve many of the actuarial 
problems with the use of case reserves themselves. Case reserves can provide useful information to the 
actuary about a large portion of the total reserve need. However, changes in how case reserves are 
established and revised cause significant problems for traditional triangle analysis. This leads actuaries 
to often put pressure on claims departments to set case reserves consistently. Since the amount of the 
case reserve can be an important consideration in the handling of the claim, this pressure can lead to 
sub-optimal decision making and results at the claim level. Because case reserves are rarely established 
on a true expected value basis, changes in claim settlement rates are also problematic for triangle 
analysis. This also leads to pressure from actuarial departments to the claim department to maintain the 
status quo, potentially leading to sub-optimal economic results as well.  

Changes in case adequacy and claim settlement rates are commonly dealt with by actuaries by using 
Berquist-Sherman techniques to adjust for these changes (Friedland, 2010, ch13). Unfortunately, these 
adjustments may be inappropriate when applied injudiciously. Consider the hypothetical scenario of a 
company that with struggling financial results, begins to write higher severity classes of business. 
Lacking experience in those classes, and desperate for premium, the company underprices the new 
policies. When loss ratios begin to develop upward, the actuaries, under pressure to reduce reserve 
estimates, note that the average case reserve amount is higher than in the past. Adjusting historical case 
reserves to the current level using a Berquist-Sherman adjustment, historical development is reduced, 
as are the reserve estimate and apparent loss ratios. The company continues to write the policies at an 
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unprofitable level and a large reserve deficiency continues to grow. The problem is not with the 
Berquist-Sherman technique itself, but rather that it was inappropriate to use it in this situation because 
the increase in case reserves was not due to an increase in case adequacy, but to a changing mix of 
business. Detection of such changes is difficult when only aggregated triangle data is considered, 
particularly given the wide range of variables that could be shifting (industry classification, geography, 
deductible, limit, etc.) 

The unreliability of subjectively determined case reserves has led some to conclude that case-incurred 
loss development should be relied on less than paid loss development when estimating total reserves 
(Zehnwirth, 1994). Taken to an extreme, an actuary may conclude that the case-incurred triangle is 
completely inappropriate to use. However, information is lost by excluding the case reserves. Ignoring 
the information contained in case reserves by the actuary is usually imprudent. Consider a small insurer 
that has seen an abnormally large number of full limits losses. Estimating a total reserve need that is 
based only on paid losses observed to date and ignoring the case reserves would be inappropriate. Even 
for a large insurer that may be able to rely on paid information only to establish a reserve estimate, the 
need for information at more granular levels for internal and external reporting purposes suggests that 
case reserves are not easily ignored. Also, changes in closure rates over time such as those observed 
during and after the Covid-19 pandemic are particularly distortive to paid loss triangles. 

Rather than ignoring or discounting the information contained in booked case reserves due to their 
subjective unreliability, an approach that uses the objective information about open claims in a reserve 
analysis avoids many of the problems with traditional adjuster case reserves, while providing 
information to the actuary about the payment potential of the currently open claims.  

The approach involves the following steps: 

• Determine, for every point in time that every claim was open, what the hindsight case reserve 
should have been (based on observed results for closed claims and simulated results for open 
claims). 

• Build a predictive model targeting this hindsight value, using objective, consistent claim 
characteristics as predictors. 

• Apply this Actuarial Case Algorithm retrospectively to every open claim for each triangle cell that 
the claim was open. (This can be done prospectively to new data as well) 

• Replace the adjuster case reserves in the case-incurred triangle with the actuarial case reserve. 
• Develop the triangle as usual. 

 
6.1.1 Organization of the Model 
 

Each claim that was open at any of the triangle evaluation points (observation dates)  has records 
included in the table for each such date. Fields that were included as predictive in the various 
component development models are good candidates to include in the case reserve algorithm as 
predictors, excluding the claim department case reserve (which will be discussed below).  
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Even though this model is summarizing and simplifying an existing process, it still is appropriate to aim 
for a parsimonious model and to separate the data into training and test, etc. One benefit of holding out 
data is that when it comes time to demonstrate the effectiveness of the model to others (section 6.1.4), 
illustrating the development on test data triangles is very powerful for demonstrating its veracity. 

The target variable for this model is the sum of payments after the observation date. This includes 
payments that have already been made as of the date of the analysis as well as simulated payments 
following that date (B+C in the timeline below). To maintain consistency between the history and the 
projections (i.e., same variability), use the results from a single simulated path for each claim rather than 
the mean for determining the ultimate value. All training claims that are open as of each observation 
point should be included, even those that ultimately close without payment since this information is not 
yet known when the claim is open. 

A Specific Simulated Path (payments) for a Selected Claim: 

<<Figure 22>> 

 

 

 

 

 

Some of the fields that are likely to be of predictive value are: 

• The age of development 
• Prior paid amounts (often useful to separate these into recent payments and older payments as 

well as indemnity, expense, etc.) 
• The claim limit remaining 
• Cause of loss 
• Injury type 
• Geographical area 
• Business/Industry classification 
• Information about the claimant 
• Claim Severity Classification 
• The accident period (trend) 

 

Note that it is acceptable to use dynamic variables (those that change over time) in a case algorithm 
model (e.g., severity classification, litigation status, etc.) Care should be taken to ensure that the values 
of these dynamic variables are the values as of the time of the prediction, not as of the most recent 
valuation. Otherwise, significant distortions can result, as in any predictive model when future-valued 
predictive variables are inadvertently used. 
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One goal of the actuarial case reserves is to avoid the impact of changing case reserve adequacy over 
time. Adjuster reserves that are subjectively determined may include valuable information that is not 
available in coded fields, but they introduce the potential for adequacy changes. By constructing an 
algorithm that does not depend on adjuster reserves, we avoid this problem. While the adjuster case 
reserves provide important information about future payments in the modeling-simulation part of the 
claim life cycle model, we seek to use that information, and then condense and assign that knowledge 
back to objective, consistent, predictive fields. That means eliminating the claim department case 
reserves from the actuarial case reserve algorithm. 

The observation date is a possible predictive variable, but care needs to be taken when using it. It can be 
a powerful way to measure and incorporate the impacts of loss cost trend, but its use can be counter to 
the goal of consistency over time, if not used carefully. There is predictive value in the date because of 
loss trend. This can be thought of as a generalization of the Berquist-Sherman technique in that the 
actuarial case reserves are systematically adjusted to reflect systematic differences over time. If the date 
is used as a predictive variable with no constraints put upon it, though, it is quite likely that the 
parameter will fluctuate from period to period. We seek to isolate the impact of the date after adjusting 
for mix shifts in the other variables being used, but additional non-included variables may be proxied. 
Also, development age and observation date are related, and although a multivariate model attempts to 
isolate their relative importance, it is easy for development age impacts to bleed into the date variable if 
it is unconstrained (date becoming a proxy for development age). If care is not taken to constrain the 
date parameter, and then it is applied to generate the algorithmic case reserves, the effect would be to 
reintroduce some of the biases that the model is working to eliminate. 

To keep the observation date from having this effect, simple constraints can be put on the calculation of 
the date parameter. For instance, it might be reasonable to assume that trend will impact claim severity 
in a linear fashion or an exponential fashion (or according to some other rule). There is judgement 
required by the actuary in deciding what rule will best describe the impact of trend without allowing the 
actuarial case reserves developed from it to fluctuate haphazardly, contrary to the goal of consistency of 
the algorithm over time. 

6.1.2 Applying the Actuarial Case Algorithm 
Once the Actuarial Case Algorithm has been constructed, it is straightforward to apply it to all of the 
open claims at each point in the loss history, and then to proceed as normal with triangle analysis.  
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<<Figure 23>> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While it is tempting to build the triangle directly from the detailed development data, there are often 
individual discrepancies in the data due to mismatches between the loss and exposure data or claims 
that do not lend themselves, for whatever reason, to the process (coded through an alternative system, 
etc.). Rather than deal with such discrepancies, it is more straightforward from an audit perspective to 
simply provide the adjustments to the claims that can be modified, summarize the modifications by 
accident period and development age, and modify the triangle accordingly. This will ensure that all claim 
payments are still captured and that if an alternative case reserve was not possible for some claims, they 
will at least be included in unadjusted form.  

Once developed, an actuarial case reserving algorithm can be easily applied for future analyses provided 
the predictive variables are available. Triangles can be quickly updated as a new step in the regular 
reserve analysis process, without re-determination of parameters. Re-parameterization of the 
parameters can therefore be done less frequently, for example annually instead of quarterly. 

After constructing the alternative triangles, actuarial analysis can be completed as usual (LDFs, etc.).  

 
6.1.3 Validation of Results 
With a case reserving algorithm that is openly and objectively applied to historical points in time in a 
triangle, and then calculating development factors in the usual way, the efficacy of the case algorithm 
itself can be justified. Regardless of how the case algorithm was determined, its ability to generate 
consistent, unbiased aggregate development of reported losses as claims transition from early stages of 
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reporting, through interim payments and into the final settlement of the claims is evidence of the 
algorithm’s veracity and strength as an actuarial tool. From an audit perspective, the calculation of a 
case reserve generated from objective claim and policy characteristic is more transparent than a 
subjective case reserve selected by a claims adjuster. If a report period triangle shows development 
factors, centered around 1.0, across multiple cuts of the data, evidence of its appropriateness is 
provided (particularly when using hold-out data, not used to build the algorithm). 

 

6.1.4 Illustrating Changes in Case Reserve Adequacy 
With the case algorithm established, it is illustrative to look at the relationship between the actuarial 
and traditional case reserves. It is likely that there will be a significant difference between the two 
because 1) the adjuster case reserves are subjective and 2) it is not necessarily the intention of the claim 
department for the case reserve to be at actuarial expected value. In fact, from a claim management 
perspective, an actuarially appropriate estimate may very well be less than ideal, because it would 
incorporate relatively rare extreme events, (e.g., the mean may be at the 70th or 80th percentile of 
potential outcomes). Setting the case reserve at that level may encourage higher settlements. In many 
actuarial reserving contexts (e.g., Berquist 1977) it is stated that inadequacy or redundancy in booked 
case reserves is not necessarily problematic in a triangle as long as it remains consistent. Comparing the 
booked case reserves to the objectively determined actuarial case reserves is a useful approach to 
identifying and illustrating changes in case adequacy and therefore potential distortion to aggregated 
triangle data using traditional case reserves. If the relationship between the actuarial and traditional 
case reserves is consistent across development age, industry class, geographic area, cause of loss, injury 
type, etc. (unlikely), and if the mix of business across all of these dimensions is constant (also unlikely), 
then there is little chance that aggregate triangles would be distorted. However, if these conditions 
don’t exist, such distortions might exist. The comparison helps identify the extent to which this 
distortion may be important. 
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Consider the graph below: 

<<Figure 24>> 

 

 

 

 

 

 

 

 

 

 

 

The blue line at the top represents the total actuarial case reserves while the orange line represents the 
total traditional booked case reserves for a book of business over time, displaying a changing level of 
average case adequacy over time. 

A chart of this type helps in discussion with management regarding differences between estimates that 
are aided by the detailed analysis and estimates derived from unadjusted triangles. Since the actuarial 
case reserves reflect the mix of claims, it is a more reliable benchmark than simply comparing to a long-
term average. Because the actuarial case reserves and booked case reserves both exist at the claim 
level, similar graphs can also be generated for any subset of the data, revealing additional information. 

 

6.1.5 Case Reserves - Actuarial vs. Claim Department  
As the actuaries develop alternative case reserving models, it is tempting to suggest that such models 
should replace existing case reserves in other contexts, such as by use in the claim department. This 
temptation should be avoided. 

The case reserves that would be ideal for the actuarial department are likely different from the case 
reserves that would be ideal for the claim department. The actuaries are best served in reserving and 
pricing by case reserves that are unbiased (i.e., represent expected value) for cohorts of claims and 
policies along significant characteristics. Referring to mean-valued expectation when settling claims is 
likely not optimal as described above. The median outcome, with its easily understood evaluation of 
“just as likely to develop up or down” may be a more appropriate value for claim department use than 
the mean. At the claim level, the median and mean outcome can be significantly different.  
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The claim department also has information about the claims that is likely not coded, including significant 
subjective information. This information is valuable at the individual claim level regarding settlement, 
but problematic for the actuary due to its potential to change subtly or dramatically over time. 
Therefore, this information should be included in the claim department’s case reserve estimate but 
generally not in the actuary’s case reserve estimate. 

This bifurcation into two separate estimates allows the claim department to operate more freely to 
make appropriate claim reserving and settlement decisions without concern that the actuary’s triangles 
will be impacted in unexpected ways. A common request from the actuary to the claim department is to 
make no changes. This is unrealistic and suboptimal, as there are often good practical and economic 
reasons for making changes. Freeing up the claim department to make changes to case reserving that 
leads to better decision-making is a distinct economic benefit. This also extends to the speed of claim 
settlement, which also historically has had the potential to distort the actuary’s triangles. If the actuary 
instead uses an algorithmic case reserve, under her/his control and developed with the goal of being 
unbiased, a change in the rate of settlement will impact case-incurred development only if it translates 
into a change in the amount of ultimate payment for the claim. If it does not, payments are exactly 
offset by a drop in the algorithmic case reserve and development is the same as it would have been if 
the change in settlement had not occurred. 

 

6.2 Unreported Claim Value Algorithm 
Like the use of an actuarially generated case reserving algorithm, actuarial triangle analysis can be 
further refined by the creation of an unreported claim value algorithm. This algorithm provides the 
expected value of claims which have not yet been reported for a particular policy as of a particular date. 

The Bornhuetter-Ferguson technique (Bornheutter, 1972) can be thought of as a simple case of an 
unreported claim value algorithm where the loss ratio and development is the same across all exposures 
of a particular age.  

Like the Bornhuetter-Ferguson simple case, we start with premium (collected, or adjusted to be at 
constant rate level) but allow loss ratio and reporting lag to vary across policies. Also, we use policy 
written premium rather than earned premium as a starting point. As long as we are concerning 
ourselves with claims that have not yet been reported, and since we are looking at a policy level, there 
are advantages to also being able to estimate not only the IBNR claims (Incurred But Not Reported), but 
also the claims that would normally be associated with the unearned portion. For convenience we will 
term these WBNI claims (Written But Not Incurred).  

Unlike the actuarial case reserve algorithm, it is unnecessary to simulate the emergence claims and 
model the result of simulation. Instead, the result can be calculated more directly using the emergence 
component models using the following steps: 

- Apply Premium Model to each policy to arrive at Reference Rate premium 
- Apply Report Lag Model to Policies to get a modeled report lag for each policy  
- Apply Frequency Model to each policy to get a modeled (non-zero) claim count. Exposure is full 

premium not matured premium 
- Apply Severity Model to each policy 
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- Allocate premium, modeled ultimate (modeled frequency * modeled severity), and modeled 
frequency to accident period for each policy 

- Calculate unreported for each policy, accident period, valuation date combination in the triangle 

Each of these steps will be discussed in greater detail. 

Applying the Premium Model 

If you are starting with an existing Claim Life Cycle Model, this step is already completed, but if you are 
applying the approach to subsequent points in time without rebuilding the CLCM, the models will have 
to be applied to refreshed underlying data. The point of this step is to generate the reference rate 
premium, which will be used as the exposure variable for the frequency model. 

Applying the Report Lag Model 

The goal of this step is to generate an expected report lag for each policy based on its characteristics. 
This model will be critical to determining the unreported portion of the ultimate loss at each point in 
time of interest for each policy. 

 Applying the Frequency Model 

The frequency model that was determined earlier used matured reference rate premium as its 
exposure, but here it is applied to the full reference rate premium to arrive at an estimated claim count 
for the policy. The ratio of written premium to reference rate premium may be included if found to be 
predictive. Policy Effective Date may also be a predictive characteristic. If so, the actuary should take 
care to consider the treatment of dates that extend beyond the history period. 

Applying the Severity Model  

The first step is to apply the determined linear relationship between claim severity and reference rate 
premium divided by claim count at the policy level to provide the a priori expected severity (discussed in 
section 5.2.1.4) prior to applying the severity model. 

Report Lag is likely an important predictive variable in the severity model. If it is, the modeled severity 
impact from report lag for the policy must be integrated over the distribution of report lag. An 
exponential assumption for report lag at the policy level simplifies this integration. For example, if the 
severity model includes report lag as a binned characteristic, each section of the report lag distribution 
is assigned its respective factor from the corresponding bin, such that an average report lag factor is 
determined for the policy. 

sum [exp(lower boundi / modeledLagj) - exp(upper boundi / modeled lagj)] * factori  

Where ‘i’ denotes the bin and ‘j’ denotes the policy. 

Allocating to Incurred Period 

To include this element in an incurred period triangle, we need to allocate the ultimate policy results 
(expected claim count and expected ultimate – equal to expected claim count multiplied by expected 
severity) to each period. Using a constant hazard rate over the policy term this is straightforward, but 
alternatives assumptions could also be made. Allocating the written premium is useful to arrive at an 
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independent earned premium that can be compared to control totals and that exists at the policy level 
and therefore can be summed to any level of interest. It is also instructive to allocate the reference rate 
premium so that comparisons of written premium to reference rate premium can be made for the 
different periods.  

Calculating the Unreported Estimate 

Each valuation date of interest (for example, quarter-end evaluations) must be determined, and then for 
every [policy - incurred period - valuation date] combination, an unreported estimate can be 
determined by integrating the remaining portion of the report lag curve for the policy, incorporating 
severity differences to the extent that report lag was used as a severity model characteristic. Including 
the policy effective date as a variable makes it easy to switch from policy period triangles to incurred 
period triangles. 

<<Figure 25>> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since we are focused on only unreported losses in this algorithm, we take steps to avoid a potential 
problem with the Bornhuetter-Ferguson method which can miss a changing mix of exposures that 
impacts the reporting pattern or expected loss ratio. Such mix changes are explicitly reflected in these 
algorithmic policy-level  reserves.  

Separate from mix changes, the Bornhuetter-Ferguson technique can lead to odd results when 
significant case savings are reflected in the development pattern by determining future savings by 
premium volume rather than by case balances themselves. For example, assume that for a given line, 
case-incurred losses are typically at 120% of ultimate at 24 months and that the a priori loss ratio is 60%. 
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In this example. the Bornhuetter-Ferguson technique projects case savings of 12% of earned premium 
[0.6*(1.0-1.2)] at 24 months regardless of the case reserves. Even if there are no case reserves from 
which to have savings, 12% of premium is the projected savings amount. By using an actuarial case 
algorithm to project future payments on known claims and a separate policy-level IBNR algorithm to 
project as yet unreported claims, we avoid this problem. 

While it is not common for actuaries to think about estimating emergence at a policy level, this 
procedure, combined with the actuarial case algorithm discussed earlier, can be very powerful to help 
one examine a book of business. Since estimates of ultimate now exist at a very granular level (policy or 
even sub-policy), the profitability of any number of slices of the business can be evaluated. With 
actuarial reserving techniques that are currently in common use, triangles would have to be developed 
and factors selected along these slices of the business. With indications of profitability at a finer level of 
detail, the company is able to be much more proactive (defensive or opportunistic) in their underwriting 
and marketing decisions.  

The algorithmic policy level IBNR reserves at specific points in time can be added to the case algorithm 
adjusted accident period triangle to create a new triangle. The policy level IBNR and WBNI could be 
added to a policy year triangle that includes case algorithm amounts as well. Both of these triangles, 
accident year and policy year, can be used to test and illustrate the combination of the case reserve 
algorithm and the unreported claim value algorithm. Remaining development in both of these triangles 
should be minimal, illustrating the algorithm’s effectiveness. 
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6.3 Comparing Reserve Estimates 
<<Figure 26>> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reserve estimates generated from simulation and those derived from analysis of alternative 
triangles (paid + actuarial case reserve, paid + actuarial case reserve + unreported reserve) are likely to 
differ from those generated from the traditional triangles. The actuary will likely be asked to explain 
why. Often the answers can be found by considering the problems that the method is trying to solve. 
For example, case reserve adequacy could be shifting (which can be measured by comparing against 
actuarial case reserves). There could be a mix shift or a change in settlement. The additional insight into 
the differences in development obtained by building the component development models (and the 
explanatory model to be discussed in section 7.2) will help point the way to highlighting these 
differences. For example, in the case of a mix shift, often by segmenting the traditional triangles along 
lines indicated by the CLCM approach (with high development segments growing or shrinking) a reserve 
similar to the one generated by CLCM can be illustrated. Often confirmation bias for existing estimates 
and methods is high and results will be viewed with skepticism. Providing evidence of the consistency of 
algorithmic case reserves by showing a report year triangle with test data or a policy year triangle of all 
data elements on test data can help to gain comfort with the approach. As data continues to emerge 
methods can be compared to each other regarding their relative strengths, overcoming confirmation 
bias.  
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7.0 Other Topics 
7.1 Other Modeling Considerations 
In actuarial reserve analysis it is common to isolate specific types of payments into separate analysis, 
such as indemnity payments from expense payments and/or medical payments. In addition to reporting 
requirements that may require separate estimates, the types of payments typically develop differently, 
and it often is beneficial to analyze them separately to provide additional insight (Friedland, 2010, Ch3).  

When building an analysis based on detailed data, this is still the case. In addition to illustrating different 
loss development patterns, the application of limits can be reflected with greater sophistication if 
simulation of the future payments is being performed. One of the strategies for using the payment type 
is to identify the payments with a distinct claim ID (i.e., treat the expense or medical as being a separate 
claim from the indemnity) with the payment type as just another variable. Scanning for possible 
interaction effects may indicate whether a separate analysis is warranted. For example, in a workers 
compensation analysis that treats indemnity payments as separate from medical, it is likely that several 
of the variables are likely to have interaction effects with the payment type. The more of these 
interaction effects there are, the more straightforward it is to model the payments with separate, 
distinct analyses, rather than deal with multiple interaction variables. 

One of the additional benefits of considering these detailed payment types is in their ability to be 
included as predictive variables themselves. As mentioned earlier, payments to date and recent 
payments can both be very predictive of future payments for an open claim. Staying with the workers’ 
compensation example, it is common that the indemnity payments to-date on a claim is predictive of 
future medical payments and vice versa. In fact, drilling down even further to provide additional details 
about recent claim payments can add significant information for predicting the future behavior of open 
claims. Contrast this with the common technique of performing separate triangle analyses for Medical 
Only claims and Medical with Indemnity Payment claims. Instead, a single Medical claims model may 
emerge with the amount of indemnity payment to date as a variable of interest. Zero indemnity 
payment is an important value, but it may be that it is not very different from indemnity payment of less 
than $1000. Also, while the status of “no indemnity payment” is fairly stable for a claim, it does have the 
potential to change, and that can create issues for a triangle. Reflecting that changing status as a paid 
indemnity variable in a medical claim actuarial case reserving algorithm avoids that problem. 

When adding such payment-type fields to a component development model it is incumbent to include 
the future simulated payments of various types as inputs into the simulation of the other payment 
types, adding complexity to the simulation process. Including such cross payment-type relationships into 
the case algorithm is more straightforward since it only requires payment types to be captured at each 
point in time.  

Loss cost trend was discussed at various previous points in this paper. Inflation is an important topic and 
highlighted in importance in recent years. While individual claim modeling gives additional insight and 
measurement of its history, the question of where it is headed is unlikely to be answered, being more a 
function of macro-economic and other systemic questions. If inflation is expected to be significantly 
different from what has been observed in the past and is embedded into the various models built, one 
approach is to detrend the simulated projections with inflation/trend consistent with the assumptions 
from the past and retrend them the forecasted inflation/trend. From an ERM perspective this technique 
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can be useful as well. Since simulation is being used to generate projections a variety of outcomes is 
projected. However, no attempt was made to insert correlation between claims into the simulation 
process and therefore an important (and for larger organizations, dominant) source of variability is 
unaccounted for. Detrending at a common historical trend and retrending by path for every claim 
payment projection using a variety of inflation/trend paths will insert an important source of variability. 

 

7.2 Explanatory Algorithm/Use in Claims Management 
While simulation is useful to project reserve development from a complex combination of predictive 
models across time periods, it can also make it difficult to attribute the specific differences in 
development across claims and exposures to specific characteristics. For example, suppose the claim 
closure rate is significantly slower for a particular geographic area. How much impact did the difference 
in closure rate make for the total estimated change from the current case reserve to ultimate for a claim 
in that area, given that there are more opportunities for changes in development the longer a claim 
remains open? For this reason, it is helpful to create explanatory predictive models at the end of the 
simulation process. Using the mean result of the simulation process for each claim as the target of 
prediction, the current case reserve as exposure, and all the variables that were found to be of 
importance in any of the component predictive models, a simplified explanation of which variables are 
the most important is provided, as is the nature of the impact of those variables. 

In addition to being a simplified explanation of which variables drove the simulation results, it also can 
be used at future evaluations to mimic what the simulation process would generate for claims open at 
those points in time. It may not be necessary to go through the complete simulation process each time 
there is a refresh to the open claim list, if the explanatory model can do a good job of mimicking the 
simulation results. This can be useful for ongoing review of the open claim inventory for purposes of 
claim management, triage, etc. In addition, a model can be built targeting the standard deviation of 
outcomes from simulation. The predicting of claim outcome variability can be useful in defense cost 
budgeting/benchmarking. Simulated results or curve parameterization from the development/SD 
models can be used to provide predicted quantiles existing open claims. This can prove useful for 
scoring outcomes and measuring groups of claims (such as by adjuster) to identify anomalies and trends.  

This post-simulation explanatory model (development prediction) is different from the actuarial case 
algorithm discussed in previous sections. Like the actuarial case algorithm, the prediction is of future 
payments for an open claim, as of a particular point in time, but there are several differences: 

 Actuarial Case Reserve 
Algorithm 

Explanatory Analysis 
(Development Prediction) 

Appropriateness for use in 
actuarial pricing and reserving 
models 

Higher Lower 

Appropriateness for use when 
managing specific claims 

Lower Higher 

Uses Claim Dept Case Reserve 
as a predictor 

False True 
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Closed Claims Included when 
parameterizing 

True False 

  

The actuarial case algorithm is designed for use in actuarial work of reserving and pricing. Individual 
claim results are less important in this context than aggregated results and changing practices regarding 
case reserve levels are problematic.  

The explanatory analysis (development prediction) concentrates on individual claim level predictions 
and is focused on the differing potential of currently open claims to develop. There is less concern about 
shifts in general case reserve adequacy at this level. 

While including the claim department case reserve as a predictor defeats the purpose of an actuarial 
case reserve due to its subjectivity, that same subjective information is useful when projecting the 
future development of an individual claim. Therefore, including the claim department case reserve in 
the explanatory analysis as a predictor is appropriate. 

Because the explanatory model is focused on the current portfolio of open claims and how the 
simulation process is projecting them forward, only those claims that are being simulated are included in 
the parameterization. For the actuarial case reserve algorithm, all claims are considered valuable for 
parameterization, with cradle-to-grave information included in the portfolio of closed claims, and a 
combination of historical information and simulation included in the open claims. 
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7.3 Use in Pricing and Internal Management Reporting 
In building a detailed model of reserving that includes IBNR, a pricing model is a natural by-product. The 
Frequency and Severity models described in Section 5.2.1 together form a model of pricing. The 
Unreported Reserve of Section 6.2 at the time of policy effective date is an expected loss cost for the 
policy.  

It is important in actuarial pricing to consider the extent to which observed losses used for the pricing 
analysis need to be developed to an ultimate level, and how to develop them. Often very broad-brush 
approaches are used to address this question. Examples include: 

• Using reserves that have been allocated to the level of detail being priced 
• Applying development factors or premium development to policy level loss or premium 
• Comparing differentials in case-incurred loss across different types of policies as an estimate of 

differentials in ultimate loss 

Each of these approaches is fine if and only if differences in loss development across each of the pricing 
variables are being properly reflected. Too often they are not. While most actuaries will recognize that 
loss development differences exist between different deductibles and that loss experience should be 
adjusted accordingly when using observed results to price deductible credits, they may not always 
consider that different industry classes, or geography, or policy form, or any other variable of interest 
may have differing loss development exhibited across its values. These differences are significant and 
indicated profitability and pricing indications can be very different between making blanket assumptions 
and properly reflecting difference in potential for additional loss development. Every pricing variable 
should be checked for potential distortions from loss development whenever immature data is being 
used to develop indications. 

Sophisticated analytics techniques are being used now by actuaries to price insurance, but when the 
true variable of interest is ultimate loss and the item measured is case-incurred loss, there are likely to 
be significant distortions.  

Possible choices for incorporating loss development differences in pricing include: 

• Use Frequency and Severity models from a claim life cycle model directly. 
• Use IBNR(0) directly from an Unreported Claim Algorithm 
• Use the results of case algorithm and IBNR algorithm as a starting point for building predictive 

models, in conjunction with payments to date. 

In addition to providing more appropriate input for actuarial pricing calculations, using reserve 
estimates calculated at the claim and exposure level are valuable for internal management reporting. 
Rather than relying on crude allocations of reserve estimates to the various levels that may be reported 
(office, region, business unit, agency, etc.), the sum of claim and policy level reserves can be easily 
provided. If there is a final adjustment needed to be allocated to be in line with a reserve total that 
differs from the summed detail reserves, using the detailed reserves as the allocation basis will provide a 
much more thoughtful result. This has great potential for providing much more timely and reliable 
information about the results of underwriting efforts than that provided by crude allocation. 
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The graphic below illustrates the way in which the detailed claim development analysis can impact 
actuarial, underwriting, and strategic decision-making. 

 

<<Figure 27>> 
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